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BACKGROUND: Heart failure (HF) is a morbid and heritable disorder 
for which the biological mechanisms are incompletely understood. We 
therefore examined genetic associations with HF in a large national 
biobank, and assessed whether refined phenotypic classification would 
facilitate genetic discovery.

METHODS: We defined all-cause HF among 488 010 participants from 
the UK Biobank and performed a genome-wide association analysis. We 
refined the HF phenotype by classifying individuals with left ventricular 
dysfunction and without coronary artery disease as having nonischemic 
cardiomyopathy (NICM), and repeated a genetic association analysis. We 
then pursued replication of lead HF and NICM variants in independent 
cohorts, and performed adjusted association analyses to assess whether 
identified genetic associations were mediated through clinical HF risk 
factors. In addition, we tested rare, loss-of-function mutations in 24 known 
dilated cardiomyopathy genes for association with HF and NICM. Finally, we 
examined associations between lead variants and left ventricular structure 
and function among individuals without HF using cardiac magnetic 
resonance imaging (n=4158) and echocardiographic data (n=30 201).

RESULTS: We identified 7382 participants with all-cause HF in the UK 
Biobank. Genome-wide association analysis of all-cause HF identified 
several suggestive loci (P<1×10–6), the majority linked to upstream HF risk 
factors, ie, coronary artery disease (CDKN2B-AS1 and MAP3K7CL) and atrial 
fibrillation (PITX2). Refining the HF phenotype yielded a subset of 2038 
NICM cases. In contrast to all-cause HF, genetic analysis of NICM revealed 
suggestive loci that have been implicated in dilated cardiomyopathy (BAG3, 
CLCNKA-ZBTB17). Dilated cardiomyopathy signals arising from our NICM 
analysis replicated in independent cohorts, persisted after HF risk factor 
adjustment, and were associated with indices of left ventricular dysfunction 
in individuals without clinical HF. In addition, analyses of loss-of-function 
variants implicated BAG3 as a disease susceptibility gene for NICM (loss-of-
function variant carrier frequency=0.01%; odds ratio,12.03; P=3.62×10–5).

CONCLUSIONS: We found several distinct genetic mechanisms of all-cause 
HF in a national biobank that reflect well-known HF risk factors. Phenotypic 
refinement to a NICM subtype appeared to facilitate the discovery of 
genetic signals that act independently of clinical HF risk factors and that 
are associated with subclinical left ventricular dysfunction.
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Heart failure (HF) is a complex clinical syndrome 
that affects >30 million individuals worldwide 
with a projected ≈40% increase in prevalence by 

2030.1–3 Despite considerable advances in HF manage-
ment, nearly 50% of affected individuals die within 5 
years of a first diagnosis.4 The rising global burden of 
HF and its apparent heritability, estimated at ≥18% by 
epidemiological studies, have prompted the study of 
genetic determinants to inform new preventive strate-
gies and novel therapeutics.5–8

Significant strides have been made in understand-
ing rare, Mendelian forms of HF.9 Furthermore, genetic 
association studies of upstream HF risk factors such as 
coronary artery disease (CAD), atrial fibrillation, and hy-
pertension have yielded numerous susceptibility loci.10–

13 Yet genetic analyses of common, complex HF have 
achieved limited success, potentially because of insuffi-
cient power and disease heterogeneity.14 Indeed, more 
recent analyses limited to recruited cohorts of specific 
HF subpopulations such as nonischemic dilated cardio-
myopathy (DCM), the leading global cause of heart 
transplantation, have identified susceptibility loci that 
have been replicated.15–18

The emergence of large population-based biobanks 
with extensive phenotypic and genotypic data enables 

rigorous investigation of genetic influences on cardio-
vascular health and disease.19 Yet as these biobanks 
grow and increasingly rely on efficient electronic phe-
notyping, the achievement of phenotypic precision 
may remain a critical challenge that limits genetic dis-
covery and downstream interpretation of findings.20 
We therefore conducted a phenotype-driven genetic 
analysis of HF in the general population. Specifically, 
we conducted a genetic association analysis of all-
cause HF and then of the more precise definition of 
nonischemic cardiomyopathy (NICM) to determine 
whether phenotypic refinement improves genetic dis-
covery in a population-based biobank. Given the het-
erogeneous etiologies of HF, we then characterized pu-
tative HF loci by examining associations with relevant 
risk factors and intermediate traits of left ventricular 
(LV) structure and function.

METHODS
Summary level genetic association results cited in this arti-
cle are available through the Broad Institute Cardiovascular 
Disease Knowledge Portal (http://broadcvdi.org) and through 
the UK Biobank.21

Study Subjects
In total, 488 010 individuals from the UK Biobank, a large, 
prospective population-based cohort, were considered when 
assessing epidemiological relationships of HF and associ-
ated risk factors. In primary genetic analyses, we included 
394 156 participants of European ancestry from the UK 
Biobank. Analysis of the UK Biobank data was approved by 
the Partners Health Care institutional review board (protocol 
2013P001840; application 7089; and protocol 2001P000053; 
application 17488). Informed consent was obtained from all 
participants by the UK Biobank.

For replication of genetic association results, we stud-
ied 1060 participants from the GRADE study (Genetic Risk 
Assessment of Defibrillator Events), a recruited cohort of pre-
defined cardiomyopathy patients with defibrillators, and up 
to 9432 participants from the Vanderbilt University Biobank 
(BioVU), a prospective, hospital-based cohort (Methods in the 
online-only Data Supplement).

Phenotyping
Disease phenotypes in UK Biobank were defined by using a 
combination of self-reported questionnaire data (confirmed 
by a trained healthcare professional) and linked hospital 
admission and death registry data. Detailed definitions for all 
disease phenotypes are provided in Table I in the online-only 
Data Supplement.

We defined all-cause HF as the presence of self-reported 
HF/pulmonary edema or cardiomyopathy at any visit; or an 
International Classification of Diseases, 10th Revision (ICD-10) 
or International Classification of Diseases, 9th Revision (ICD-9) 
billing code indicative of heart/ventricular failure or a cardiomy-
opathy of any cause. Individuals with a diagnosis of hypertrophic 
cardiomyopathy, as ascertained by self-report or by pertinent 

Clinical Perspective

What Is New?
• We performed a population-based genetic asso-

ciation study of all-cause heart failure that yielded 
multiple genetic signals for known heart failure risk 
factors, such as coronary artery disease and atrial 
fibrillation.

• Refining the heart failure phenotype to a non-
ischemic cardiomyopathy subset enhanced the 
detection of genetic loci associated with dilated 
cardiomyopathy, which appear to operate indepen-
dent of traditional heart failure risk factors.

• Genetic variants associated with nonischemic car-
diomyopathy were also associated with subclinical 
traits of left ventricular dysfunction.

What Are the Clinical Implications?
• Phenotypic refinement aids in the discovery of 

novel genetic signals that reflect distinct etiologic 
heart failure subtypes.

• The BAG3 locus is a principal nonischemic cardio-
myopathy susceptibility locus, and future functional 
characterization of this and other genetic loci may 
inform therapeutic development.

• Common genetic variants associated with both 
clinical and subclinical heart failure may be lever-
aged to improve heart failure risk prediction and 
prevention.
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ICD-10 codes, were excluded from the HF and NICM phenotypes 
even if they met the above criteria because of the substantial 
Mendelian inheritance pattern of hypertrophic cardiomyopathy.

Among patients with all-cause HF, we defined NICM on 
the basis of LV dysfunction and the absence of CAD. A priori, 
individuals were considered to have LV dysfunction if they 
carried ICD-10 diagnoses of DCM or LV failure, or an ICD-9 
diagnosis of left HF. Indicators for CAD included myocardial 
infarction or coronary revascularization, as described previ-
ously.10 Myocardial infarction was defined as a self-report of 
heart attack or an ICD-10 code of acute myocardial infarction. 
Coronary revascularization was defined as the presence of an 
operative or procedure code for coronary artery bypass sur-
gery or coronary angioplasty (Table I in the online-only Data 
Supplement).

Genetic Association Testing, Replication, 
and Meta-Analysis
We performed primary genome-wide association testing 
among UK Biobank participants passing sample quality con-
trol by comparing HF or NICM cases with non-HF controls. In 
total, 6504 HF cases were compared with 387 652 controls, 
and 1816 NICM cases were compared with 388 326 controls. 
Only variants with minor allele frequency >1% available in 
the Haplotype Reference Consortium v1.1 panel and imputed 
with imputation quality >0.3 were included (Methods in the 
online-only Data Supplement).22

Lead variants from the HF and NICM analyses passing a sug-
gestive threshold of P<1×10–6 were taken forward for replica-
tion. For lead HF variants, we pursued replication in 2 studies: 
(1) BioVU, comparing 2982 HF cases with 6450 controls; and 
(2) the GRADE study, comparing 1060 cases (classified prospec-
tively at the time of recruitment) with an independent sample of 
2327 controls from BioVU genotyped on the same platform as 
the GRADE samples and selected based on overlapping genetic 
ancestry. For lead NICM variants, we pursued replication in 3 
studies: (1) BioVU, comparing 226 NICM cases (ascertained 
retrospectively through application of our NICM phenotyping 
algorithm to the medical record alongside available echocardio-
graphic data, classifying LV dysfunction as LV ejection fraction 
≤40%) with 4709 controls; (2) the GRADE study, comparing 
260 NICM cases (classified prospectively at the time of recruit-
ment) with 2327 controls; and (3) publicly available summary 
exome-chip association statistics from a recent study of DCM 
including 2796 cases and 6877 control subjects from 6 popula-
tions of European ancestry.17 When a lead variant was not avail-
able in a replication study, the best available proxy was selected 
(Methods in the online-only Data Supplement).

Associations Between HF and NICM 
Susceptibility Variants and HF Risk 
Factors
Using individuals free of HF in the UK Biobank, we performed 
additional association testing of lead HF and NICM variants 
with 10 binary and 3 continuous risk factors for HF (Table I 
in the online-only Data Supplement). Furthermore, to deter-
mine whether lead variant associations with HF and NICM were 
independent of HF risk factors, we repeated genetic association 
analyses for all lead variants, adjusting for relevant risk factors.

Associations Between HF and NICM 
Susceptibility Variants and Cardiac 
Structure/Function
We further tested lead variants at identified HF and NICM 
susceptibility loci for association with intermediate traits of LV 
structure and function by assessing (1) individual-level data 
on LV ejection fraction, LV end-diastolic volume, LV end-sys-
tolic volume, LV stroke volume, cardiac output, and cardiac 
index in 4158 individuals without HF who underwent cardiac 
magnetic resonance imaging (MRI) in the UK Biobank; and (2) 
summary-level data of 16 echocardiographic traits in 30 201 
individuals without HF in the EchoGen consortium. For car-
diac MRI data in the UK Biobank, we excluded individuals 
with measurements falling outside 3 SDs from the mean for 
a given trait.

Rare Predicted Loss-of-Function 
Associations
To complement the above common variant analyses, we 
examined whether rare (minor allele frequency <1%) pre-
dicted loss-of-function (pLOF) variants at known DCM genes 
are associated with HF or NICM in the UK Biobank.23 Only 
directly genotyped variants were included in these analyses. 
In total, 111 genes were considered, but only 24 had ≥2 
qualifying variants and appreciable pLOF carriers for testing 
(carrier frequency >0.0001) (Table II in the online-only Data 
Supplement). We annotated genotyped variants from the UK 
Biobank using Ensembl Variant Effect Predictor version 88 
using the “–pick_allele” option to select one consequence 
per variant allele.24 Variants annotated as protein-truncat-
ing, premature stops, canonical splice sites, or frameshift 
mutations were classified as pLOF using the LOFTEE plugin 
for VEP.25

Statistical Analysis
Primary genome-wide association testing for HF and NICM in 
the UK Biobank was performed using logistic regression and 
adjusting for age at first visit, sex, genotyping array, and the 
first 10 principal components of ancestry.

To test the association of lead HF and NICM susceptibil-
ity variants with HF risk factors, we used a combination of 
linear and logistic regression adjusting for age at first visit, 
sex, genotyping array, and the first 10 principal components 
of ancestry. We considered significant any single nucleo-
tide polymorphism (SNP)–risk factor association surpassing 
a Bonferroni-corrected threshold of P<5.49×10–4 [0.05/(13 
traits×7 SNPs)].

To test the association of lead HF and NICM variants with 
intermediate traits of cardiac structure and function, we per-
formed linear regression adjusted for age at first visit, sex, 
genotyping array, and the first 10 principal components of 
ancestry. We considered significant any SNP-trait association 
surpassing a Bonferroni-corrected threshold of P<0.0012 
[0.05/(6 traits×7 SNPs)].

For rare pLOF analyses, we performed association test-
ing using a collapsed gene-based test, classifying samples 
as either carriers or noncarriers of any pLOF variant in a 
given gene, adjusting for age at baseline, sex, genotyping 
array, and the first 10 principal components of ancestry. A 
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Bonferroni-corrected P value significance threshold was set at 
P=0.001 [0.05/(2 phenotypes×24 genes)].

Primary association analyses for HF and NICM were per-
formed in PLINK2 (https://www.cog-genomics.org/plink/2.0/).26 
Association testing with HF risk factors and intermediate car-
diac imaging traits was performed in R v3.3.0 (R Foundation). 
Rare gene-based testing was performed using EPACTS 
(https://genome.sph.umich.edu/wiki/EPACTS).27

RESULTS
Defining All-Cause HF and Assessing 
Overlap With HF Risk Factors
The study population comprised 488 010 individuals in 
the UK Biobank with available genotypic and pheno-
typic data. In total, 7382 individuals met criteria for the 
broader classification of all-cause HF. A large propor-
tion of all-cause HF cases had comorbid HF risk factors, 
including CAD (47.3%) and atrial fibrillation (43.0%) 
(Figure 1; Table 1).

Genome-Wide Association Analyses of 
All-Cause HF in UK Biobank
In the UK Biobank, primary genetic association analy-
ses for all-cause HF (n=6504 passing sample quality 
control) yielded 1 locus that exceeded the threshold 
for genome-wide statistical significance (rs1906609 
upstream of PITX2, odds ratio [OR], 1.15; P=9.08×10–

10) and 4 other loci with suggestive association sig-
nals (P<1×10–6; rs7857118 near CDKN2B-AS1, OR, 
1.10; P=2.15×10–7; rs12627426 near MAP3K7CL, 
OR, 1.13; P=2.63×10–7; rs73839819 near RYBP, OR, 
1.33; P=2.65×10–7; rs2234962 in BAG3, OR, 1.12; 

P=3.55×10–7). Most lead signals represented known 
susceptibility loci for HF risk factors, such as atrial fi-
brillation (PITX2) and CAD (CDKN2B-AS1 and MAP3K-
7CL) (Figure 2A; Table 2).12,28 No meaningful test sta-
tistic inflation was detected (Figure I in the online-only 
Data Supplement). In a sensitivity analysis in which we 
repeated genetic association testing after omitting 
cases of all-cause HF derived solely from self-reported 
data rather than from ICD codes (n=197; only 3% of 
all quality-controlled cases), we observed similar as-
sociations and effect estimates, suggesting that our 
phenotype was not unduly influenced by potential 
self-report misclassification (Table III in the online-only 
Data Supplement).

Refining the All-Cause HF Phenotype  
to NICM
We then refined the all-cause HF phenotype to 
NICM on the basis of LV dysfunction without CAD 
and identified 2038 individuals who met phenotypic 
criteria (Figure  1). There was a higher proportion 
of women in the NICM group than in the all-cause 
HF group (35.0% versus 30.2%, P<0.001). Further-
more, in comparison with the all-cause HF group, 
individuals in the NICM subset were more likely 
to have comorbid atrial fibrillation (50.8% versus 
43.0%, P<0.001), and less likely to have comor-
bid type 2 diabetes mellitus (19.4% versus 26.1%, 
P<0.001) and hypertension (69.3% versus 75.6%, 
P<0.001) (Table 1).

Validation of NICM Phenotype
To validate our NICM phenotype, we applied the 
above phenotyping algorithm to individuals in the 
Partners HealthCare Biobank (Methods in the on-
line-only Data Supplement Methods) and performed 
manual chart reviews for 50 individuals who met 
criteria for NICM. Forty-five of the 50 study par-
ticipants had evidence of a NICM diagnosis within 
the medical record (positive predictive value=0.90), 
which we considered sufficient validation to support 
genetic analysis.

Genome-Wide Association Analysis of 
NICM in UK Biobank
A genome-wide association analysis for our refined 
NICM phenotype resulted in 3 signals: 1 locus reach-
ing genome-wide significance (rs2234962, a mis-
sense variant in BAG3, OR, 1.30; P=2.32×10–9) and 
2 others at suggestive significance (rs12138073, an 
intronic variant near CLCNKA and ZBTB17, OR, 1.29; 
P=5.35×10–7; rs2634071 in high linkage disequilib-
rium with rs1906609 upstream of PITX2, OR, 1.25; 

Figure 1. Epidemiological overlap between heart failure phenotypes 
and prominent risk factors in UK Biobank.  
The overlap between all-cause heart failure, nonischemic cardiomyopathy, 
coronary artery disease, and atrial fibrillation cases are displayed among 
488 010 study participants in the UK Biobank. Case counts represent the sum 
total of disease at baseline and incident cases.
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P=1.06×10–7), the majority at loci previously implicat-
ed in DCM (BAG3 and CLCNKA-ZBTB17) (Figure 2B; 
Table 3).16,17,29–31 It is notable that we observed strong 
association signals at BAG3 for all-cause HF and 
NICM, although effect estimates were consistently 
stronger for NICM. No meaningful test statistic infla-
tion was detected (Figure I in the online-only Data 
Supplement).

Replication of Lead All-Cause HF and 
NICM Signals
We sought replication for the all-cause HF and NICM vari-
ants surpassing our suggestive significance threshold of 
P<1×10–6: rs1906609/rs2634071 (PITX2), rs7857118 (CD-
KN2B-AS1), rs12627426 (MAP3K7CL), rs73839819 (RYBP), 
rs2234962 (BAG3), and rs12138073 (CLCNKA-ZBTB17).

Table 1. Baseline Characteristics of UK Biobank Samples by Heart Failure Status

Characteristics
All-Cause HF

(n=7382)
NICM

(n=2038)

All-cause HF  
versus NICM

P Value

Referents Free  
of All-Cause HF

(n=480 628)

Age at baseline, y 62.2 (6.3) 61.6 (6.7) <0.001 57.0 (8.1)

Male sex, n (%) 5151 (69.8) 1324 (65.0) <0.001 218 203 (45.4)

UK BiLEVE array, n (%) 1071 (14.5) 274 (13.4) 0.12 48 830 (10.2)

Height, cm 170.3 (9.4) 170.8 (9.6) 0.003 168.5 (9.3)

Body mass index, kg/m2 29.8 (5.8) 29.3 (5.9) <0.001 27.4 (4.8)

Waist-hip ratio 0.94 (0.09) 0.92 (0.09) <0.001 0.87 (0.09)

Systolic blood pressure, mm Hg 148.5 (22.4) 147.5 (22.2) 0.02 140.9 (20.7)

Diastolic blood pressure, mm Hg 86.5 (12.2) 86.8 (12.2) 0.19 84.3 (11.3)

Coronary artery disease, n (%) 3491 (47.3) 0 (0.0) NA 19 726 (4.1)

Type 2 DM, n (%) 1929 (26.1) 395 (19.4) <0.001 22 515 (4.7)

Atrial fibrillation, n (%) 3172 (43.0) 1036 (50.8) <0.001 14 498 (3.0)

Hypertension, n (%) 5584 (75.6) 1413 (69.3) <0.001 153 369 (31.9)

Values are presented as mean (SD) unless otherwise noted. Baseline characteristics of NICM samples (n=2038) were 
compared with all-cause heart failure samples without NICM (n=5344) using a standard t test for continuous measures 
and χ2 test for dichotomous traits. DM indicates diabetes mellitus; HF, heart failure; NA, not available; NICM, nonischemic 
cardiomyopathy; and UK BiLEVE, UK Biobank Lung Exome Variant Evaluation.

Figure 2. Manhattan plots of primary genome-wide association discovery analysis in UK Biobank for all-cause heart failure and nonischemic cardio-
myopathy. 
Logistic regression was used to test the association of allelic dosages for all variants with minor allele frequency >1% with (A) all-cause heart failure and (B) non-
ischemic cardiomyopathy. Lines are drawn at 1×10–6 and 5×10–8 to denote suggestive and genome-wide significant associations, respectively. Loci demonstrating P 
value<1×10–6 are highlighted in blue, and the nearest genes are labeled.
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Of the 5 lead variants associated with all-cause HF, 
we observed replication in the GRADE cohort for those 
at BAG3 and MAP3K7CL. Replication was more modest 
for variants at CDKN2B-AS1 and PITX2, albeit with ef-
fect estimates similar to those observed in UK Biobank. 
In contrast, the association signal at RYBP did not rep-
licate in GRADE, with an effect estimate directionally 
inconsistent with that observed in UK Biobank. No lead 
variants associated with all-cause HF were replicated in 
Vanderbilt BioVU (Table 2).

Of the lead NICM variants, we observed strong and 
consistent replication for the signal at BAG3, which as-
sociated with NICM in the Vanderbilt-BioVU, GRADE, 
and Esslinger et al17 cohorts. The lead variant at CLCNKA-
ZBTB17 (rs12138073) demonstrated a more modest, but 
directionally consistent, association with NICM in GRADE, 
whereas a proxy-SNP (rs34471231, r2=0.99) associated 
strongly with NICM in the Esslinger et al17 cohort. Of 
note, an association with NICM has been reported previ-

ously for an independent variant (rs10927875, r2=0.01) 
near our lead CLCNKA-ZBTB17 signal.17 Because this vari-
ant was associated with NICM in UK Biobank (OR, 1.15; 
P=1.15×10–4), and demonstrated modest to strong rep-
lication in the Vanderbilt-BioVU, GRADE, and Esslinger 
et al17 cohorts, we included it in subsequent follow-up 
analyses. Finally, the lead variant for PITX2 did not rep-
licate in Vanderbilt-BioVU or GRADE, although a proxy 
SNP (rs6843082, r2=0.82 with rs2634071) did associate 
strongly with NICM in the Esslinger et al17 cohort (Table 3).

Association of Lead All-Cause HF and 
NICM Variants With HF Risk Factors
To assess whether lead variants for all-cause HF and NICM 
confer increased risk of disease through upstream risk fac-
tors, we first performed an association scan of 13 HF risk 
factors in UK Biobank. We observed robust associations 
between rs7857118 (CDKN2B-AS1) and CAD (OR per 

Table 2. Replication of Suggestive Signals From Genetic Association Analyses for All-Cause Heart Failure in UK Biobank

SNP Chr Pos
Nearest

Gene
RA/
NRA

UK Biobank
(n cases=6504)

BioVU Study
(n cases=2982)

GRADE
(n cases=1060)

RAF
OR

(95% CI) P Value RAF
OR

(95% CI) P Value RAF
OR

(95% CI) P Value

rs1906609 4 111666451 PITX2 T/G 0.16 1.15
(1.10–1.21)

9.08×10–10 0.18 1.00
(0.92–1.09)

0.95 0.18 1.14
(0.99–1.33)

0.08

rs7857118 9 22124140 CDKN2B-AS1 T/A 0.51 1.10
(1.06–1.14)

2.15×10–7 0.52 1.05
(0.99–1.12)

0.11 0.53 1.07
(0.96–1.20)

0.24

rs12627426 21 30519457 MAP3K7CL A/T 0.16 1.13
(1.08–1.18)

2.63×10–7 0.15 1.02
(0.93–1.11)

0.70 0.15 1.20
(1.03–1.40)

0.02

rs73839819 3 72579834 RYBP G/A 0.02 1.33
(1.19–1.48)

2.65×10–7 0.02 0.94
(0.75–1.17)

0.55 0.02 0.90
(0.60–1.36)

0.63

rs2234962 10 121429633 BAG3 T/C 0.78 1.12
(1.07–1.17)

3.55×10–7 0.79 1.00
(0.92–1.07)

0.90 0.80 1.27
(1.10–1.46)

0.001

BioVU indicates Vanderbilt University Biobank; Chr, chromosome; GRADE, Genetic Risk Assessment of Defibrillator Events; HF, heart failure; NRA, all-cause HF 
nonrisk allele; OR, odds ratio; Pos, hg19 position; RA, all-cause HF risk allele; RAF, all-cause HF risk allele frequency; and SNP, single nucleotide polymorphism. 

Table 3. Replication of Suggestive Signals From Genetic Association Analyses for Nonischemic Cardiomyopathy in UK Biobank

Rsid Chr Pos
Nearest

Gene
RA/
NRA

UK Biobank
(n cases=1816)

BioVU Study
(n cases=226)

GRADE
(n cases=260)

Esslinger et al17 (2017)
(n cases=2796)

RAF
OR

(95% CI) P Value RAF
OR

(95% CI) P Value RAF
OR

(95% CI) P Value RAF
OR

(95% CI) P Value

rs2234962 10 121429633 BAG3 T/C 0.78 1.30
(1.19–1.41)

2.32×10–9 0.80 1.49
(1.14–1.94)

3.12×10–3 0.79 1.39
(1.08–1.80)

0.01 0.81 1.61
(1.48–1.77)

1.70×10–25

rs2634071 4 111669220 PITX2 T/C 0.16 1.25
(1.15–1.36)

1.06×10–7 0.17 1.05
(0.82–1.35)

0.68 0.17 1.13
(0.87–1.46)

0.36 — — —

rs6843082* 4 111718067 PITX2 G/A 0.19 1.24
(1.14–1.34)

1.09×10–7 0.21 0.93
(0.73–1.18)

0.53 0.20 1.13
(0.89–1.43)

0.33 0.23 1.11
(1.03–1.20)

7.52×10–3

rs12138073 1 16354958 CLCNKA T/C 0.10 1.29
(1.17–1.42)

5.35×10–7 0.10 1.06
(0.78–1.44)

0.72 0.10 1.19
(0.88–1.62)

0.26 — — —

rs34471231† 1 16356522 CLCNKA G/A 0.10 1.29
(1.17–1.42)

6.58×10–7 0.10 1.05
(0.77–1.43)

0.74 0.10 1.19
(0.88–1.62)

0.26 0.10 1.20
(1.08–1.34)

9.61×10–4

rs10927875 1 16299312 ZBTB17 C/T 0.68 1.15
(1.07–1.24)

1.15×10–4 0.68 1.22
(0.98–1.50)

0.07 0.68 1.18
(0.96–1.47)

0.12 0.69 1.30
(1.21–1.40)

8.11×10–13

BioVU indicates Vanderbilt University Biobank; Chr, chromosome; GRADE, Genetic Risk Assessment of Defibrillator Events; NICM, nonischemic cardiomyopathy; NRA, NICM nonrisk allele; 
Pos, hg19 position; RA, NICM risk allele; RAF, NICM risk allele frequency; and OR, odds ratio.

*rs6843082 is present in the exome chip analysis from Esslinger et al17 and in linkage disequilibrium with rs2634071 in the UK Biobank (r2=0.82).

†rs34471231 is present in the exome chip analysis from Esslinger et al17 and in linkage disequilibrium with rs12138073 in the UK Biobank (r2=0.99).
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HF/NICM risk allele=1.23; P=1.24×10–72), and rs1906609 
(PITX2) and atrial fibrillation (OR per HF/NICM risk al-
lele=1.49; P=3.61×10–143), both well beyond a Bonferroni-
corrected level of statistical significance [P<0.05/(7 vari-
ants×13 traits) = 5.49×10–4]. We also noted the following, 
more modest risk factor associations surpassing the sta-
tistical threshold for multiple testing: rs2234962 (BAG3) 
and hypertension (OR per HF/NICM risk allele=1.02; 
P=4.23×10–4), systolic blood pressure (effect per HF/NICM 
risk allele=0.19 mm Hg; P=3.52×10–4) and diastolic blood 
pressure (effect per HF/NICM risk allele=0.19 mm Hg; 
P=1.07×10–10); and rs10927875 (CLCNKA-ZBTB17) 
and hypertension (OR per HF/NICM risk allele=1.02; 
P=1.02×10–4), systolic blood pressure (effect per HF/NICM 
risk allele=0.20; P=1.12×10–5), and diastolic blood pres-
sure (effect per HF/NICM risk allele=0.09; P=5.58×10–4) 
(Table IV in the online-only Data Supplement).

Coronary Artery Disease
Because CDKN2B-AS1 on chromosome 9 represents a 
well-known CAD susceptibility locus, and the lead vari-
ant at this locus (rs7857118) associated strongly with 
CAD in the UK Biobank, we performed an association 
analysis for all-cause HF adjusted for baseline CAD to 
test whether this locus increased HF risk independent of 
CAD. Adjustment for baseline CAD resulted in marked 
attenuation of the association between rs7857118 and 
all-cause HF (OR, 1.04; P=0.03). Moreover, rs7857118 
showed no association with NICM (OR, 1.04; P=0.25), 
further suggesting that the link between the CKDN2B-
AS1 locus and all-cause HF is largely mediated by CAD. 
Adjustment for baseline CAD did not significantly in-
fluence the strength of association between other lead 
variants and all-cause HF (Figure 3; Table V in the on-
line-only Data Supplement).

Atrial Fibrillation
PITX2 on chromosome 4 is a recognized risk locus for 
atrial fibrillation, which may mediate the observed asso-
ciation between this gene region and all-cause HF/NICM. 
However, because the link between atrial fibrillation and 
HF is bidirectional, we first examined the prevailing tem-
poral relationship between incident atrial fibrillation and 
incident all-cause HF/NICM in the UK Biobank.32,33 Of the 
1536 individuals who developed both incident all-cause 
HF and incident atrial fibrillation, 1237 (81%) carried a 
diagnosis of atrial fibrillation at or before a first diagnosis 
of HF. A similar pattern was observed for NICM, where 
436 of 513 individuals with coincident disease (85%) 
had evidence of prior or concurrent atrial fibrillation (Fig-
ure II in the online-only Data Supplement).

We therefore performed genetic association test-
ing for all-cause HF and NICM in UK Biobank adjusted 
for baseline atrial fibrillation. Adjustment for baseline 
atrial fibrillation resulted in marked attenuation of the 
association between rs1906609 and all-cause HF (OR, 
1.05; P=0.04), and between rs2634071 and NICM (OR, 
1.11; P=0.02), suggesting that the association between 
PITX2 and all-cause HF/NICM in UK Biobank is largely 
mediated by coincident or antecedent atrial fibrillation. 
Adjustment for baseline atrial fibrillation did not sig-
nificantly influence the strength of association between 
other lead variants and all-cause HF or NICM (Figure 3; 
Tables VI and VII in the online-only Data Supplement).

Hypertension
Neither BAG3 nor CLCNKA-ZBTB17 is an established 
susceptibility locus for hypertension, but variants at each 
were associated with hypertension and systolic/diastolic 
blood pressure in our analysis of the UK Biobank. We 
therefore pursued genetic association testing for all-

Figure 3. Association of suggestive all-cause heart failure (HF) and nonischemic cardiomyopathy (NICM) variants adjusted for known HF risk factors.  
Logistic regression was used to test the association of lead variants identified at suggestive loci (P<1×10–6) for either all-cause HF or NICM against both end points 
adjusted for baseline atrial fibrillation (AF), baseline coronary artery disease (CAD), and baseline hypertension. Nonischemic cardiomyopathy testing was not ad-
justed for CAD because CAD was an exclusion criterion. All analyses were additionally adjusted for age at baseline, sex, genotyping array, and the first 10 principal 
components of ancestry. Circle size denotes P value, and shading represents the odds ratio for a 1-allele increase of the all-cause HF/NICM risk allele.
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cause HF and NICM in UK Biobank adjusted for prevalent 
hypertension, systolic blood pressure, or diastolic blood 
pressure. Adjusted analyses demonstrated persistently 
strong signals at rs2234962 (BAG3) and rs10927875 
(CLCNKA-ZBTB17) with minimal attenuation of the al-
lelic effect size, suggesting that variation at BAG3 and 
CLCNKA-ZBTB17 confer risk of all-cause HF and NICM 
independent of elevated blood pressure (Figure 3; Tables 
VIII and IX in the online-only Data Supplement).

Association of Lead All-Cause HF and 
NICM Variants With Intermediate 
Traits of LV Structure and Function in 
Individuals Without Clinical HF
To evaluate the relationship between lead all-cause HF 
and NICM variants with quantitative measures of LV 
structure and function in the general population, we 
queried available imaging data in individuals without 
clinical HF from 2 sources: (1) cardiac MRI data from 
4158 participants in the UK Biobank (Figure III in the 

online-only Data Supplement) and (2) summary-level 
data on 16 echocardiographic parameters in 30 081 in-
dividuals from a recent genome-wide association study 
(EchoGen Consortium).34 Clinical characteristics of HF-
free UK Biobank participants who did and did not un-
dergo cardiac MRI are presented in Table X in the on-
line-only Data Supplement. Individuals who underwent 
cardiac MRI in the UK Biobank were generally healthier 
than their counterparts, as evidenced by younger mean 
age, lower mean body mass index, and lower rates of 
CAD, atrial fibrillation, and type 2 diabetes mellitus.

Of the 7 lead all-cause HF and NICM variants assessed, 
only those at BAG3 and CLCNKA-ZBTB17 associated with 
cardiac MRI measures of LV structure and function in the 
UK Biobank at a Bonferroni-corrected level of statisti-
cal significance [P<0.05/(6 traits×7 SNPs)=0.0012]. Spe-
cifically, we observed associations between rs2234962 
(BAG3) and reduced LV ejection fraction (effect per 
NICM risk allele=–0.58%; P=5.68×10–5) and increased 
LV end-systolic volume (effect per NICM risk allele=1.53 
mL; P=3.41×10–4) (Figure 4A, Table XI in the online-only  

Figure 4. Association of suggestive all-cause heart failure and nonischemic cardiomyopathy (NICM) variants with selected cardiac MRI traits of left 
ventricular (LV) structure and function in UK Biobank.  
Linear regression was used to test the association of suggestive signals for all-cause heart failure and NICM variants with measured cardiac magnetic resonance 
imaging (MRI) traits in up to 4158 individuals free of clinical heart failure in the UK Biobank. Testing was performed by using allelic dosages, adjusting for age at 
baseline, sex, genotyping chip, and the first 10 principal components of ancestry. Results are displayed for rs2234962 near BAG3 (A) and rs10927875 near ZBTB17 
(B) against 3 selected cardiac MRI traits, because no other variants had associations reaching statistical significance. Points represent the effect in SD units of each 
respective cardiac MRI trait, and error bars denote 95% CIs. Significant associations passing Bonferroni significance (P<0.05/42=1.19×10–3) are denoted with an 
asterisk. β indicates effect per NICM risk allele in SD units of the cardiac MRI trait.
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Data Supplement); these associations replicated in 
analogous, summary-level data from the EchoGen 
Consortium, where rs2234962 associated with re-
duced fractional shortening (effect per NICM risk 
allele=–0.30%; P=6.05×10–8) and increased LV dia-
stolic diameter (effect per NICM risk allele=0.017 cm; 
P=6.59×10–5).34 In addition, rs10927875 (CLNCKA-
ZBTB17) was significantly associated with reduced LV 
ejection fraction (effect per NICM risk allele=–0.42%; 
P=1.08×10–3) and increased LV end-systolic volume 
(effect per NICM risk allele=1.31 mL; P=6.49×10–4) 
in UK Biobank (Figure 4B; Table XI in the online-only 
Data Supplement).

Rare, Loss-of-Function Variants in DCM 
Genes and Risk of All-Cause HF or NICM 
in UK Biobank
We next investigated whether rarer mutations with pre-
dicted functional consequences might be differentially 
associated with all-cause HF and NICM in the UK Bio-
bank. Rare mutations of larger effect size have been 
identified previously for DCM. We tested whether rare, 
pLOF variants in 24 known DCM genes with carrier fre-
quency >0.0001 associated with our phenotypes for 
all-cause HF or NICM in the UK Biobank. Only the as-
sociation between pLOF mutations at BAG3 and NICM 
surpassed a Bonferroni-corrected significance threshold 
[P<0.05/(2 phenotypes×24 genes)=0.001]: 0.165% of 
NICM cases carried a rare, loss-of-function mutation 
in BAG3, whereas 0.014% of controls did (OR, 12.03; 
P=3.62×10–5). There were no statistically significant as-
sociations between any pLOF mutations at the tested 
DCM genes and all-cause HF (Table XII in the online-
only Data Supplement).

DISCUSSION
Genome-wide association analysis of all-cause HF in 
the UK Biobank identified multiple known loci for HF 
risk factors, ie, CAD and atrial fibrillation, highlighting 
major genetic determinants of this common disease. By 
comparison, refinement of all-cause HF to a specific, 
NICM phenotype yielded strong genetic signals at loci 
for DCM that were independent of HF risk factors and 
associated with intermediate traits of LV structure and 
function in individuals without clinical HF.

These results permit several conclusions. First, our 
genetic analysis of all-cause HF underscores the com-
plexity of this condition and points to several etiologic 
subtypes, driven in part by a genetic predisposition to 
prominent HF risk factors. For instance, we found that 
PITX2, a known susceptibility locus for atrial fibrillation, 
and both CDKN2B-AS1 and MAP3K7CL, known CAD 
loci, were strongly associated with all-cause HF.

Atrial fibrillation and HF are established risk fac-
tors for one another and frequently coexist.32 A recent 
study noted that >50% of all patients with HF have 
coincident atrial fibrillation, and that atrial fibrillation 
is more likely to precede rather than follow a diagnosis 
of HF.33 Among patients with all-cause HF and NICM in 
the UK Biobank, we observed comparable rates of an-
tecedent and comorbid atrial fibrillation. Furthermore, 
the attenuation of the PITX2 association signal after 
adjustment for prevalent atrial fibrillation indicates that 
the observed association between PITX2 and HF likely 
reflects coincident disease. Inconsistent replication of 
PITX2 in our independent cohorts may reflect the exclu-
sion of patients with tachycardia-induced cardiomyopa-
thy in recruited, hospital-based registries, highlighting 
the phenotypic precision offered by recruited cohorts 
capable of disentangling the complex HF–atrial fibrilla-
tion relationship a priori. In contrast, population-based 
approaches are complementary and enable the analysis 
of HF in the context of prominent risk factors.

Similarly, the association signal at CDKN2B-AS1 was 
diminished after adjusting for prevalent CAD and, in 
the NICM sample, underscoring the importance of 
CAD as a driver of HF. It is noteworthy that we observed 
only modest attenuation of the association between 
the MAP3K7CL locus and all-cause HF, and a stronger 
effect estimate for the association of this locus with 
NICM, suggesting that variation at MAP3K7CL may in-
fluence HF risk via mechanisms independent of CAD. 
Further analyses are needed to determine how the 
MAP3K7CL locus might mediate HF beyond its contri-
bution to CAD risk.

Second, phenotypic refinement of HF within a large, 
population-based biobank is feasible and may facilitate 
genetic discovery. Prior efforts to uncover the genet-
ics of common, complex HF have been hindered by 
marked disease heterogeneity. Although recent ad-
vances have come from a small number of genetic 
analyses of selected HF subpopulations, there has been 
limited consideration to date of such disease subtypes 
and HF with preserved versus reduced ejection frac-
tion.13,16–18 Whereas large sample sizes enhance power 
for discovery, our data suggest that precise phenotyp-
ing is important for the discovery of subtype-specific HF 
susceptibility loci. In comparison with the all-cause HF 
phenotype, the more precise NICM definition yielded 
stronger genetic association signals at known loci for 
DCM (ie, BAG3 and CLCNKA-ZBTB17) despite 3-fold 
fewer cases. Moreover, lead NICM variants demon-
strated more consistent replication in our independent 
cohorts than did the lead all-cause HF variants, likely 
because of the heterogeneity of the all-cause HF phe-
notype. Also, whereas our analysis of loss-of-function 
variation corroborates prior data implicating BAG3 as a 
bona-fide disease susceptibility gene for NICM, the as-
sociation with all-cause HF was not significant, further 
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underscoring the importance of phenotype for specific-
ity of associations.16,17,29 Finally, our algorithm for as-
certaining NICM in the UK Biobank used standard self-
reported and billing code data and may therefore be 
portable to other electronic health systems and forth-
coming population-based biobanks.

Third, genetic drivers of DCM, best identified by 
the NICM phenotype, may mediate a subclinical car-
diomyopathic process that predisposes to clinical HF. 
Here, we demonstrate that common genetic variants 
associated with clinical HF are also associated with in-
termediate traits of LV structure and function in indi-
viduals without clinical disease. Prior epidemiological 
studies have noted that subtle, preclinical abnormali-
ties in LV chamber size and function may herald pro-
gression to overt HF, prompting subsequent genetic 
association studies of intermediate echocardiographic 
traits.34–37 Consistent associations between a genetic 
variant, an intermediate imaging trait, and clinical HF 
therefore imply a causal mechanistic pathway. In our 
analyses of cardiac MRI and echocardiographic traits, 2 
lead NICM variants previously linked to DCM, at BAG3 
and CLCNKA-ZBTB17, associated significantly with re-
duced LV systolic function and increased LV chamber 
size. It is important to note that these associations were 
observed among those without clinical HF, suggesting 
a subclinical process that may portend a genetic predis-
position to clinical HF. Whether such genetically mediat-
ed cardiomyopathies confer a prognosis similar to that 
of other cardiomyopathies, ie, with respect to the risk 
of sudden cardiac death, remains unclear and requires 
further study.

Of note, ample functional data support the mecha-
nistic roles of both BAG3 and CLCNKA-ZBTB17 in the 
pathogenesis of HF. For example, recent studies have 
suggested an antiapoptotic function for BAG3 in car-
diomyocytes, with morpholino knockdown in zebrafish 
resulting in cardiac enlargement and systolic dysfunc-
tion.31,38–45 Similarly, recent in vitro and in vivo analy-
ses of ZBTB17 have identified an antiapoptotic gene 
product critical for the adaptation of cardiomyocytes to 
biomechanical stress.46 Alongside our human genetic 
observations at these 2 loci, the data advocate for the 
pursuit and prioritization of other DCM signals with 
similar prognostic and therapeutic implications to ad-
vance current understanding of HF genetics.

Several limitations should be acknowledged. First, 
quantitative measures of LV structure and function 
were unavailable for most UK Biobank participants, 
preventing classification of HF with reduced versus 
preserved ejection fraction and precluding a robust ge-
netic association study of intermediate imaging traits. 
Forthcoming cardiac MRI data on 100 000 individu-
als in the UK Biobank will soon enable categorization 
of many more study participants based on LV systolic 
function. Second, in the absence of cohort-wide cardi-

ac imaging data to permit morphological classifications 
of disease, phenotyping was predicated on data from 
self-reports and the medical record, which carry the 
potential for disease misclassification. Furthermore, 
our refinement of all-cause HF focuses on the NICM 
subset, but not on the remainder of the HF popula-
tion, which remains a heterogeneous group. However, 
we submit that our phenotyping approach serves only 
as an initial strategy for addressing the heterogeneity 
of HF. Future studies using more sophisticated pheno-
typing strategies, including the integration of clinical, 
laboratory, and imaging data, may provide more nu-
anced classifications of HF and further facilitate ge-
netic discovery. Third, temporal disease associations in 
the UK Biobank relied on hospitalization-based health 
registry data and periodic study examinations; disease 
status may have gone clinically unrecognized during 
interval periods. Fourth, analyses of rare, loss-of-func-
tion mutations were limited to those variants available 
on the genotyping array, and were unable to detect 
novel and private mutations. Fifth, our analyses were 
limited to participants of European ancestry; because 
these findings may not apply to individuals of other 
ancestries, validation of these results in ancestries out-
side of Europe is required.

In conclusion, we found evidence for distinct ge-
netic mechanisms of HF, including those that operate 
through known HF risk factors. Phenotypic refinement 
of all-cause HF to a specific NICM subset appears to 
facilitate genetic discovery by better identifying genetic 
signals for cardiomyopathy that operate independent 
of HF risk factors and associate with clinical and subclin-
ical disease. Future studies are warranted to investigate 
the prognostic and therapeutic implications of these 
findings for the prevention and management of HF.
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