
Listen to this manuscript’s

audio summary by

JACC Editor-in-Chief

Dr. Valentin Fuster.

J O U R N A L O F T H E A M E R I C A N C O L L E G E O F C A R D I O L O G Y V O L . 6 9 , N O . 1 3 , 2 0 1 7

ª 2 0 1 7 B Y T H E A M E R I C A N CO L L E G E O F C A R D I O L O G Y F O U N DA T I O N

P U B L I S H E D B Y E L S E V I E R

I S S N 0 7 3 5 - 1 0 9 7 / $ 3 6 . 0 0

h t t p : / / d x . d o i . o r g / 1 0 . 1 0 1 6 / j . j a c c . 2 0 1 7 . 0 1 . 0 5 1
THE PRESENT AND FUTURE

STATE-OF-THE-ART REVIEW
Pulmonary Hypertension in Heart Failure
Pathophysiology, Pathobiology, and
Emerging Clinical Perspectives
Marco Guazzi, MD, PHD,a Robert Naeije, MD, PHDb
ABSTRACT
Fro

Br

au

Ma
Pulmonary hypertension is a common hemodynamic complication of heart failure. Interest in left-sided pulmonary

hypertension has increased remarkably in recent years because its development and consequences for the right heart are

now seen as mainstay abnormalities that begin in the early stages of the disease and bear unfavorable prognostic

insights. However, some knowledge gaps limit our ability to influence this complex condition. Accordingly, attention is

now focused on: 1) establishing a definitive consensus for a hemodynamic definition, perhaps incorporating exercise and

fluid challenge; 2) implementing the limited data available on the pathobiology of lung capillaries and small arteries;

3) developing standard methods for assessing right ventricular function and, hopefully, its coupling to pulmonary

circulation; and 4) searching for effective therapies that may benefit lung vessels and the remodeled right ventricle.

The authors review the pathophysiology, pathobiology, and emerging clinical perspectives on pulmonary hypertension

across the broad spectrum of heart failure stages. (J Am Coll Cardiol 2017;69:1718–34) © 2017 by the American College

of Cardiology Foundation.
These studies have revealed that it is the
disturbance of the pulmonary circulation that is
the center of the problem of congestive failure.

—Parker and Weiss (1)
P ulmonary hypertension (PH) in heart failure
(HF) is common, pathophysiologically rele-
vant, and highly prognostic (2). It is now clear

that abnormalities in pulmonary hemodynamic status
occur beginning in the early stages of HF and may be
detected even in patients who are optimally treated.
There are, however, gaps in knowledge and limita-
tions in treatment that represent the background con-
tent for the present State-of-the-Art paper.

HISTORICAL NOTES

HF has long been known to affect the pulmonary
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AB BR E V I A T I O N S

AND ACRONYM S

ATPase = adenosine

triphosphatase

CO = cardiac output

CpcPH = combined pre- and

post-capillary pulmonary

hypertension

DPG = diastolic pressure

gradient

Ea = arterial elastance

EDV = end-diastolic volume

Ees = end-systolic elastance

EF = ejection fraction

ESP = end-systolic pressure

ESV = end-systolic volume

HF = heart failure

HFpEF = heart failure with

preserved ejection fraction

HFrEF = heart failure with

reduced ejection fraction

IpcPH = isolated post-capillary

pulmonary hypertension

LAP = left atrial pressure

LV = left ventricular

mPAP = mean pulmonary

artery pressure

NO = nitric oxide

PA = pulmonary artery

PAC = pulmonary artery

compliance

PAH = pulmonary arterial

hypertension

PAP = pulmonary artery

pressure

PAWP = pulmonary artery

wedge pressure

PC = pulmonary circulation

PH = pulmonary hypertension

Pmax = maximum pressure

PVR = pulmonary vascular

resistance

RV = right ventricular

sPAP = systolic pulmonary

artery pressure

SV = stroke volume

TAPSE = tricuspid annular

plane systolic excursion

TPG = transpulmonary gradient

TPVR = total pulmonary

vascular resistance
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systolic peaking of pressure. “Ventricularization” and
late systolic peaking of the PA pressure (PAP) curve
have since been recognized as features of advanced
pulmonary vascular disease and marked increase in
RV afterload (5). Since the 1950s, invasive measure-
ments of the PC have become part of catheterization
laboratories’ routines, documenting that PAP in-
creases either as an effect of high pulmonary blood
flow, such as in left-to-right cardiac shunts or hyper-
kinetic states, or as an increase in left atrial pressure
(LAP), as in mitral stenosis and left ventricular (LV)
failure. In 1958, Wood (6) proposed a hemodynamic
classification of PH in which a pathological increase
in mean PAP (mPAP) was “passive” (rise in LAP),
“hyperkinetic” (increase in cardiac output [CO]), or
caused by an excessive pulmonary vascular resistance
(PVR) due to obstruction (thrombosis), obliteration
(decreased pulmonary vascular capacity), or constric-
tion. The frame of this classification corresponded to
the PVR equation: PVR ¼ (mPAP � LAP)/CO, which can
be rewritten as mPAP ¼ PVR � CO þ LAP.

Wood catheterized 60 healthy volunteers to
determine the limits of normal and found that mPAP
never exceeded 20 mm Hg, which has been repeat-
edly confirmed since then (7).

With the validation of LAP measurements by a PA
wedge pressure (PAWP) in the early 1950s (8), it
became possible to generate a complete set of pul-
monary hemodynamic measurements only by right
heart catheterization. Exercise stress measurements
were implemented to disclose latent PH at rest, as
illustrated in Figure 1 (lower right), showing brisk
increases in mPAP and PAWP with exercise from near
normal measurements at rest (6). For many years
since then, knowledge of PH in HF has been anecdotal
and limited to a few studies, primarily involving pa-
tients with valvular heart disease and candidates for
heart transplantation (stage D). Most recently, PH has
become an upfront topic of interest, with its patho-
physiology a key target of therapy from earlier HF
stages (B to C), which are categorized into 2 pheno-
types according to whether LV ejection fraction (EF)
is preserved (HF with preserved EF [HFpEF]) or
reduced (HF with reduced EF [HFrEF]), and related
comorbid disorders (Figure 2).

PC: HEMODYNAMIC DETERMINANTS AND

IMPLICATIONS IN HF

At variance with the systemic circulation, which com-
bines a resistive and capacitive load that can vary (at
least in part) independently of each other, the PC shows
a more equally distributed resistance and compliance
over the whole arterial small vessel system. This
peculiar distribution is unaltered by PH and
results in PVR and pulmonary artery compli-
ance (PAC) (i.e., CO/pulse pressure) usually
evolving together, but in opposite directions,
and thus PVR and PAC are inversely related.
Thus, the product of PVR and PAC (resistance
[R] and compliance [C] time) is nearly
constant (2).

Reduced PAC occurs early as a conse-
quence of the PAWP increase and mediates
increased mPAP at any given level of PAWP,
as initially modeled by Harvey et al. (9) in the
early 1970s and recently revisited with focus
on HF by Tedford et al. (10). This is illustrated
in Figure 3 for patients with chronic increase
in PAWP versus normal (Figure 3A) or patients
with acutely increased exercise PAWP
(Figure 3B). A reduction in PAC due to
increased PAWP would enhance RV afterload
by elevating the pulsatile load relative to the
resistive load, thereby contributing to RV
dysfunction.

Changes in PVR occur later than PAC in the
natural history of the disease, and reasons for
abnormal PVR at the small-vessel level
include not only remodeling but also vaso-
constriction and endothelial dysfunction,
which affect vessel distensibility and PVR
calculation.

Indeed, the PVR equation rests on the as-
sumptions that the pulmonary vascular
pressure-flow relationship is linear and
crosses the origin and that LAP is transmitted
upstream to mPAP in a 1:1 manner (11).
However, the pulmonary “resistive” vessels,
which are distal in the pulmonary arterial
tree, are distensible in physiological condi-
tions (11,12). The diameter of in vitro moun-
ted pulmonary vessels increases by 2%/
mm Hg transmural pressure, which is
remarkably constant over a wide range of
animal species (12). Linehan et al. (13)
modeled the PC, taking into account the
distensibility of the resistive vessels, and
conceived an improved PVR equation incor-
porating a resistive vessel distensibility co-
efficient a: TPVR ¼ [(1 þ a �mPAP)5 � (1 þ a �
LAP)5]/5 � a � CO, where TPVR is total PVR, or
mPAP/CO. This equation rewritten as mPAP ¼
{[(1 þ aLAP)5 þ 5aTPVR � CO]1/5 � 1}/a shows
that LAP transmission upstream to mPAP

is <1:1 and decreases with increasing flow. An
interesting application of this equation is that a can
be calculated from a set of PAP, PAWP, and CO



FIGURE 1 Pulmonary Hypertension in Heart Failure: Historical Findings on Histopathology and Hemodynamic Status

(Left) Lung histopathology from patients with mitral stenosis and pulmonary hypertension (PH). (A) Normal arteriole. (B) Medial hypertrophy with intimal and

adventitial proliferation. (C) Recanalized fibrotic thrombus. (D) Thickened alveolar-capillary membrane with fibrosis and epithelial alveolar and endothelial capillary

proliferation. Reprinted with permission from Tandon and Kasturi (4). (Top right) Right ventricular (top) and pulmonary arterial (bottom) pressure tracings in a patient

with PH and mitral stenosis. The right ventricular pressure wave shows a sharp initial upstroke, followed by a short plateau and a late systolic rise. The pulmonary

artery pressure (PAP) curve shows a wide pulse pressure and late systolic peaking. Reprinted with permission from Cournand et al. (5). (Bottom right) PAP and

pulmonary artery wedge pressure (PAWP) in a patient with mitral stenosis at rest and at exercise. Exercise induces an increase in cardiac output (not shown) and

parallel increases in PAP and PAWP. Reprinted with permission from Wood (6).
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measurements (12). Invasive and noninvasive studies
have shown that a calculated in this way is normally
between 1% and 2%/mm Hg, higher in young, healthy
women compared with men, and is decreased with
aging or chronic hypoxic exposure (14). The same
improved PVR equation was recently used to show
reduced resistive vessel distensibility in early or
latent pulmonary vascular disease (15). There has
been just 1 report on a calculations in HF and in
pulmonary arterial hypertension (PAH). On average, a
moderately decreased to 0.8% to 0.9%/mm Hg in
patients with HFpEF or HFrEF and 1.4%/mm Hg in
control subjects (16). Interestingly, a was positively
correlated with RV EF, independently of predicted
peak oxygen uptake and cardiovascular mortality,
and improved with sildenafil therapy (16).

Assuming an even more decreased resistive vessel
distensibility in HF caused by the extensive arteriolar
and alveolocapillary remodeling, the upstream
transmission of PAWP to mPAP may eventually
approach a 1:1 ratio (11).
These considerations are on the basis of a simpli-
fication of the PC as a steady flow system. Indeed, this
model cannot explain a disproportionate (>1:1) in-
crease in mPAP with respect to PAWP in patients with
HF with no evidence of pulmonary vascular remod-
eling. Accordingly, the pulsatility of the PC and
vasoconstriction play a major role in changes in the
transpulmonary gradient (TPG; mPAP � PAWP) and
its normalization after cardiac transplantation (17).
TPG normal limits are not yet exactly defined. Until
the 1970s, the identified upper cutoff was 10 mm Hg
(18), which has more recently drifted to 15 mm Hg.

As PVR is actually normalized for blood flow, its
use may appear more advantageous compared with
TPG. Nonetheless, any error in the determination of
CO will affect the derived value of PVR. This can
become quite significant in low-output states, as
often observed in HF.

When vessel distensibility significantly decreases,
it also becomes a mediator of changes in the diastolic
pressure gradient (DPG) (diastolic pulmonary



FIGURE 2 Pulmonary Hypertension and its Clinical “Inducers” According to Heart Failure Stages
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For many years, pulmonary hypertension (PH) has been considered to have clinical meaning in advanced heart failure (HF) stages, whereas

more recently, interest is focused on earlier stages and corresponding comorbid precipitating factors. COPD ¼ chronic obstructive pulmonary

disease; Cpc ¼ combined pre- and post-capillary; HFpEF ¼ heart failure with preserved ejection fraction; HFrEF ¼ heart failure with reduced

ejection fraction; HTx ¼ heart transplantation; Ipc ¼ isolated post-capillary; LAP ¼ left atrial pressure; LVADS ¼ left ventricular assist

devices; OSAS ¼ obstructive sleep apnea syndrome.
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pressure � PAWP). Indeed, although a preserved
resistive vessel distensibility results in a decreased
DPG, its loss results in an unchanged DPG at increased
PAWP, as shown in Figure 4 (11).

It is easy to predict that resistive vessel distensi-
bility similarly affects the TPG at increased PAWP,
which explains the variability of the TPG in HF, even
when PAC is markedly reduced.

Of note, coexistence of mitral regurgitation be-
comes a further source of increased pulsatile loading
and PH (19). Data on the true prevalence of PH in the
presence of mitral regurgitation range from 23% to
73% in HFrEF (20), with a significantly lower rate in
HFpEF (21). Exercise is the typical physiological
condition that triggers dynamic mitral regurgitation
and further increases in PH, which portends an un-
favorable outcome, especially when RV failure co-
exists (22).

PATHOBIOLOGICAL CHANGES IN LUNG

CAPILLARIES, ARTERIOLES, AND VEINS

At variance with noncardiac forms of PH, the typical
manifestation of group 2 PH is pulmonary congestion
due to pressure injury of the capillary wall, otherwise
called stress failure, a process initially described
by West and Mathieu-Costello (23) in a series of labo-
ratory preparations. Stress failure disrupts the
anatomic integrity of the alveolar-capillary unit and
alters endothelial permeability, fluid filtration, and
reabsorption. Alveolar flooding is the most impressive
consequence of stress failure (23). When LAP elevation
is less striking and long-lasting, true capillary remod-
eling occurs with associated alteration in gas exchange
(24). The typical fluid overload of HF reproduced in
experimental models by saline infusion 0.5 ml/min/kg
for 180 min in the rabbit PA led to 44% fluid accumu-
lation in the interstitial space, ultrastructural changes,
and impairment of gas transfer (25). Edema induces
activation of metalloproteinases that degrade matrix
proteoglycan and alter the composition of the plasma
membrane, causing increased endothelial membrane
fluidity. The weakened tensile strength of the mem-
brane potentiates endothelial stress failure (25). The
pathophysiological correlates of alveolar-capillary
stress failure in patients with cardiac disease have
been poorly investigated. In a study of 53 patients with
acute cardiogenic pulmonary edema, injury of the
alveolar-capillary barrier was associated with
increased levels of plasma pulmonary surfactant-
associated proteins A and B, and tumor necrosis fac-
tor–a (26). Persistence of elevated levels of tumor
necrosis factor–a after pulmonary edema resolution
may reflect pulmonary inflammation and explainswhy
fluid accumulation can persist despite resolution of
hydrostatic stress failure.

Reversibility in the impaired biology of lung cap-
illaries is uncertain. Experimental models of PH due
to cardiac dysfunction have brought important in-
sights. In a mouse model of PH and HFpEF with LV



FIGURE 3 Pulmonary Vascular Resistance-Compliance Relationships Obtained in a Large Dataset of Patients With Pulmonary Artery Hypertension

of Different Etiologies
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(A) The leftward shift relationship in patients with high pulmonary artery wedge pressure (PAWP) due to decreased pulmonary artery compliance. Interestingly, this

leftward shift is also induced by an acute PAWP increase during exercise, even in the early stages of heart failure with preserved ejection fraction (HFpEF) (B).

Reprinted with permission from Tedford et al. (10). PCWP ¼ pulmonary capillary wedge pressure; SPH ¼ secondary pulmonary hypertension.
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hypertrophy, the rise in LAP promoted impressive
arteriolar remodeling and increased vascular oxida-
tive stress, leukocyte infiltration, and lung fibrosis
after 4 weeks (27). In addition, lung weight changes
were due to tissue and vascular changes rather than
extravascular lung water (27). These features are
reminiscent of the extracellular matrix thickening
and proliferation reported in patients with mitral
stenosis and pulmonary venous pressure elevation
(28,29), a process that might be protective against
excessive fluid accumulation. Specifically, the in-
crease in lung interstitial connective tissue associated
with chronic capillary hydrostatic overload results in
increased extravascular fluid storage attributable to
increased production of an extracellular matrix
component (mainly glycosaminoglycans) that has the
potential to absorb and accommodate fluid in the
interstitium. At least in cases of a subcritical persis-
tent rise in LAP, this compensatory mechanism could
prove beneficial by constraining fluid in the peri-
vascular space without limiting gas diffusion (30).
An increase in collagen content typically occurs in
post-capillary PH and is mediated by proliferation of
myofibroblasts, termed interstitial contractile cells
(31). Growth factors that can trigger proliferation are
classical local growth factors, such as angiotensin II,
endothelin-1, tumor necrosis factor–a, and especially
transforming growth factor, which is a major inducer
of epithelial-mesenchymal transition in the fibrotic
lung (32). The caveolin family of proteins (Cav-1,
Cav-2, and Cav-3), which are the main structural
component of caveolar membranes surrounding the
vesicular invaginations arising from plasma mem-
branes, is seemingly involved in the remodeling
process through hyperactivation of the Janus kinase/
signal transducer and activator of transcription
signaling cascade (33). In a mouse knockout of Cav-2,
there is a significant thickening of alveolar septa, and
in a post–myocardial infarction model, Cav-1 and Cav-
2 expression is reduced to undetectable levels (34).
Along with modifications in extracellular matrix
composition and function, abnormalities in



FIGURE 4 Modeled Effects of Pulmonary Artery Wedge Pressure on the Transpulmonary Pressure Gradient or the Diastolic Pressure

Gradient at 2 Extremes of Stroke Volume
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Plots show that the diastolic pressure gradient (DPG) decreases (A) or not (B) depending on resistive vessel distensibility. At a high-normal

stroke volume (SV) of 120 ml, the transpulmonary pressure gradient (TPG) reaches 12 mm Hg at a pulmonary artery wedge pressure (PAWP)

of 15 mm Hg, and higher PAWPs are necessarily associated with higher TPGs (B). With lower SV and persistent resistive vessel distensibility,

the TPG may remain at 12 mm Hg at PAWPs up to 30 mm Hg (A). Reprinted with permission from Naeije et al. (11).
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endothelial function (35) and alveolar fluid reab-
sorption participate in the pathobiological derange-
ment (36). Park et al. (37) found that lung
microvascular endothelial cells exposed to cyclic
mechanical strain in vitro released proinflammatory
and profibrotic mediators, identifying a specific
putative role for monocyte chemoattractant protein 1.

A recent gene ontology analysis performed in a
sample of 165 patients with HF with PH revealed
enrichment in genes related to cytoskeleton structure
and immune function, with significant pathways
including extracellular matrix, basement membrane,
transferase activity, pre-ribosome structure, and
major histocompatibility complex class II protein (38).

In the PC, the endothelium-mediated local control
of vasomotility is primarily challenged by an imbal-
ance between nitric oxide (NO) and endothelin-1
(39,40). Studies with blockade of NO synthesis have
confirmed that endothelium-derived NO is a basic
determinant of the baseline pulmonary vascular tone
and amediator of the dilating response to endothelium
activation (41). In normal subjects, systemic infusion
of NG-monomethyl-L-arginine, an analog of L-arginine
that inhibits NO synthase, raises PAP, enhances pul-
monary vasoconstriction (39), and inhibits the lung
diffusion of carbonmonoxide by lowering the alveolar-
capillarymembrane conductance (42). In patients with
HF, infusion of NG-monomethyl-L-arginine in the
pulmonary circuit causes dose-dependent vasocon-
striction, which is partially reversed by acetylcholine
(43). However, vessel dilation is refractory when the
baseline pressure is elevated.

Despite the importance of pulmonary veins in
normal lung vascular physiology, few data are avail-
able on venous pathobiological changes possibly
associated with left-sided PH. In an elegant parallel
study performed in rats and humans with HF, un-
dergoing selected lung biopsies during LV assist de-
vice implantation and removal, Hunt et al. (44)
detected overexpression of urokinase plasminogen
activator in remodeled pulmonary veins and some
degrees of so-called arterialization of the veins in
patients with advanced PH, which could reverse after
device removal.

ALVEOLAR FLUID CLEARANCE. Fluid clearance
from alveoli to capillaries is a process of vital
importance, especially in PH and HF. Sodium (Naþ)
transport across the alveolar epithelium helps reab-
sorb fetal fluid (36), ensures proper thinness of the
adult alveolar fluid (the so-called film), and keeps the
alveolar space free of fluid, especially in pathological
states, when alveolar permeability to plasma proteins
is increased (24). The alveolar type II cell transport of
Naþ provides the major driving force for water
removal from the alveolar space. After uptake, Naþ is



CENTRAL ILLUSTRATION Main Pathobiological and Functional Abnormalities in Alveoli, Capillaries,
Small Arteries and Veins

Guazzi, M. et al. J Am Coll Cardiol. 2017;69(13):1718–34.

Continued on the next page
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pumped actively into the lung interstitium by the
sodium-potassium (Naþ, Kþ)–adenosine triphospha-
tase (ATPase). For optimal gas exchange, the fine
mechanisms that control alveolar Naþ and water
metabolism are fundamentally involved. Although
disorders in lung diffusion in cardiac patients have
generally been referred to as alterations of endothe-
lial and alveolar epithelial cells, experimental obser-
vations are also consistent with involvement of
alveolar water metabolism (45). Interestingly, over-
expression of the Naþ, Kþ

–ATPase a1 subunit in rats
by adenovirus gene transfer promotes increased fluid
clearance. In the same model, Naþ transport and
alveolar water clearance in the presence of elevated
LAP was not different from that in rats studied at
normal LAP (46). Hypoxia, another common associ-
ation with chronic HF, is also capable of inhibiting
the alveolar Naþ, Kþ

–ATPase function and trans-
alveolar fluid transport (47). These findings support
the intriguing hypothesis that impaired Naþ, Kþ

–

ATPase gene expression occurs during acute lung
injury and provide evidence that the result of a
pressure and/or a volume overload on the lung cir-
culation is an increase in capillary permeability to
water and ions and disruption of local mechanisms
for gas exchange.

Overall, these structural and functional modifica-
tions of the alveolar-capillary membrane trigger
an increased impedance to gas transfer (47). In
HF, assessment of lung diffusion capacity by
measuring the alveolar membrane conductance
component enables quantification of the anatomic
and functional integrity of the alveolar-capillary
unit, which provides prognostic insights (48), and
should likely receive more attention in the complex
pathophysiological context of group 2 PH develop-
ment (49) (Central Illustration).
CENTRAL ILLUSTRATION Continued
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As discussed in part previously, there are 3 commonly
used measures of out-of-proportion PH: TPG, DPG,
and PVR, each of which increases definitively in the
presence of pulmonary vascular remodeling
(2,6,11,50). Nonetheless, although increases in TPG
and PVR may also occur without true vascular
remodeling, DPG might be a more sensitive and spe-
cific reflection of the condition. Despite the fact that
PVR remains a cornerstone reference variable, some
recent insights deserve consideration. The DPG was
used in the 1970s in combination with PAWP, CO (or
arteriovenous oxygen content difference), and blood
pressure measurements in decision trees for the dif-
ferential diagnosis of cardiac and pulmonary causes
of acute respiratory failure (51). The normal upper
limit of DPG was assumed to be 5 mm Hg (9), as
derived from athletic young adults. The DPG was
recently revisited by Gerges et al. (52) in a study of
2,056 patients with HF. PH, defined by mPAP >25
mm Hg, was diagnosed in 1,094 of these patients, a
TPG >12 mm Hg was diagnosed in 490, and a combi-
nation of TPG >12 mm Hg and a DPG >7 mm Hg in 179
(16%). The survival of the patients with high TPG and
DPG was very poor, comparable with that of un-
treated PAH. Some histopathologic examinations of
the pulmonary small vessels in patients with both
increased TPG and DPG have shown pulmonary
vascular remodeling with medial hypertrophy,
intimal thickening, and adventitial proliferation
(Figure 5). From multivariate analysis, the DPG
emerged as an independent predictor of survival,
with a cutoff value of 7 mm Hg (52). These data, and
refreshed pathophysiological reasoning, inspired a
revision of definitions and terminology of PH on HF at
of the alveolar-capillary membrane. Fluid is continuously cleared from the alveolar surface by

the adenosine triphosphate (ATP) dependent Naþ-Kþ pumps “drain” fluid through the inter-

there is the extracellular matrix with cellular attachments composed primarily by collagen type

s to a pathological increase in left atrial pressure (LAP), pulmonary artery wedge pressure

scular resistance (PVR) and diastolic pressure gradient (DPG) still in the normal range. The

s in the endothelium and vascular wall and fluid swelling in the interstitium and in the alveoli.

arrier and carry in additional fluid clearance. In addition, some initial impairment in the alveolar
þ-Kþ pumps may occur. Overall, these disruptive processes are resembled under the “alveolar

molecular changes described in the text. Small arteries exhibit endothelial dysfunction and

onary arteries are detectable, the pulmonary veins already show some thickness and trend to

reported in the text. CpcPH: This hemodynamic stage is characterized by a further mechanical

ward the excessive fluid swelling from capillaries, a progressive thickening and collagen

st fluid swelling but compromise gas exchange diffusion for lengthening the path between air

d capillary Naþ-Kþ pumps activity become fully impaired. The venous system becomes fully

ss and remodeling. Molecular mechanisms involved in these processes are reported in the text.



FIGURE 5 Survival Analysis and Capillary Histological Characterization in Group 2 Pulmonary Hypertension and Its Evolving Stages

Compared With Nonpulmonary Hypertension and Pulmonary Arterial Hypertension
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TPG ¼ transpulmonary pressure gradient.
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the Fifth World Pulmonary Hypertension Sympo-
sium, held in Nice, France, in 2013 (53). PH, defined
by mPAP $25 mm Hg, was qualified as pre-capillary
with PAWP #15 mm Hg and post-capillary with
mean PAWP >15 mm Hg. Post-capillary PH was
further divided into isolated post-capillary PH
(IpcPH) with a normal DPG and combined pre- and
post-capillary (CpcPH) with a DPG $7 mm Hg. Thus,
the acronym CpcPH was proposed to replace the
terms out-of-proportion PH and reactive.

Revisiting the DPG in clinical trials has stirred some
controversy. Tampakakis et al. (54) recently reported
that poor outcome in PH and HF is related to a low
DPG. However, this is not entirely in contradiction
with the study by Gerges et al. (52), who actually re-
ported on flexible hazard ratio survival functions
corrected for sex, age, ischemia, and creatinine
clearance, which were bow shaped, with predictive
power for either very low or high DPG (55). Thus,
survival would be decreased in the case of either very
low or higher than normal DPG. Very low DPG may
occur in the case of a rapid rise in PAWP and a slower
rise in diastolic PAP and mPAP related to preserved
resistive vessel distensibility in acute or subacute HF.
However, the lack of prediction of a high DPG in the
study by Tampakakis et al. might be explained by a
small proportion of patients with “true” pulmonary
vascular disease in their database. Furthermore, RV
function adaptation to afterload may matter more to
prognosis than pulmonary pressure alone (56,57).

According to the debate generated, the 2015 Euro-
pean Society of Cardiology guidelines redefined
CpcPH as a combination of DPG $7 mm Hg and/or PVR
>3 Wood units (50). Although adding a PVR criterion
makes sense, as the DPG is much smaller than PAP or
the TPG (57), an isolated increase in PVR in HF with a
normal DPG may erroneously double the prevalence
of Cp-PH in HF (58). Defining CpcPH by a combination
of a DPG $7 mm Hg and PVR >3 Wood units is prob-
ably the best option.

How common is CpcPH inHF? This was explored in a
retrospective and prospective database of nearly
4,000 cardiac catheterizations for suspected PH or for
valve replacements, percutaneous interventions, and



FIGURE 6 Heart Failure Patient Survival by Systolic Pulmonary Artery Pressure and Right Ventricular Function Categorization
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surgical procedures (59). HF was diagnosed in 30% to
50% of cases and PH in 50% to 80% of them. Approxi-
mately 20% of patients with PH met the CpcPH he-
modynamic definition. The prevalence of CpcPH did
not appear specific to HFpEF or HFrEF, which were
almost equally distributed. Predictors of CpcPH were
younger age and coexistent chronic obstructive pul-
monary disease or valvular heart disease. The only
echocardiographic variable discriminating between
IpcPH and CpcPH was the ratio of tricuspid annular
plane systolic excursion (TAPSE) to systolic PAP
(sPAP), an indicator of RV–to–PC coupling (60).

EXERCISE AND FLUID CHALLENGES

Assessing pulmonary hemodynamic status during
exercise (61) or fluid loading (62) appear remarkable
tools for the reproduction of symptoms, in-depth
understanding of the pathophysiology, and detec-
tion of initial abnormal adaptations in hemodynamic
status, typical of early stages of the disease (61). In
this respect, an additional opportunity is the ability to
uncover group 2 PH in patients with HFpEF with
normal PAWP at rest (63,64). Despite this back-
ground, experts remain utterly cautious. European
Society of Cardiology guidelines recommend against
the use of exercise stress testing or volume loading
because of insufficient evidence about the limits of
normal and prognostic or therapeutic implications
(50). However, the practice has been around since the
early times of cardiac catheterization (6), and
significant progress and information have been
gained in recent years (61).

It is now well established that the upper limit of
normal of mPAP during an incremental dynamic ex-
ercise challenge is 30 mm Hg at a CO <10 l/min, which
corresponds to a TPVR (mPAP/CO) of 3 Wood units
(65). The cause of higher than normal mPAP during
exercise, or “exercise-induced PH,” is either an up-
stream transmission of increased PAWP, as in HF, or
an increase in PVR, as in pulmonary vascular disease,
disturbed lung mechanics, or hypoxia (5,65). The
differential diagnosis is most often clinically
straightforward but must be established by precise
measurement and interpretation of PAWP or LV end-
diastolic pressure. The upper limit of normal of PAWP
during exercise is generally thought to be between 15
and 20 mm Hg, but higher values can be recorded in
older subjects (66). Some consider 20 mm Hg a
reasonable upper limit of normal (67). However, a
cutoff value of 25 mm Hg has been proposed for the
diagnosis of HFpEF (61). Likewise, for mPAP, a flow-
corrected measure may be more appropriate, but
there has been no study specifically addressing this
issue. As TPVR decreases during exercise by up to
25% (68), PAWP-CO slopes should not exceed
2 mm Hg/l/min, as observed in control groups of
studies on exercise testing in HF (61).

Measurements of PAP and PAWP during exercise
are technically challenging because of respiratory
pressure swings. Although it would then seem pref-
erable to average the reading of pulmonary vascular
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pressure curves over several respiratory cycles (69),
this is not the general practice (61,67). Guidelines
recommend measurements at end-expiration at rest,
but allow averaging over several respiratory cycles
during exercise when respirophasic changes become
excessive (50). This recommendation is ambiguous,
because switching from one mode to the other
remains undefined.

There has been also an ongoing debate about how
to standardize a fluid challenge and what cutoff
values for PAWP to consider. Fluid loading increases
PAWP in healthy volunteers as a function of age, sex,
amount infused, and infusion rate (62). Although
there is some consensus to infuse 500 ml of saline in 5
to 10 min, some groups consider a PAWP of 15 mm Hg
as a reasonable cutoff for a pathological response
(64). However, a reanalysis of existing data in healthy
subjects and accumulating clinical experience are
drifting this cutoff value to 20 mm Hg or, more pre-
cisely, 18 mm Hg, as recently demonstrated in 212
patients referred for PH, challenged with 7 ml/kg of
saline given in <5 min (70). Both exercise and fluid
loading increase systemic venous return, but the net
hemodynamic result may differ (71). Indeed, exercise
promotes sympathetic nervous system activation,
intrathoracic pressure changes, and mixed venous or
even arterial hypoxemia. Fluid challenge may pre-
cipitate interstitial fluid accumulation, impaired gas
diffusion, and irritation of J receptors (72). This will
need further clarification.

RV DYSFUNCTION AND FAILURE

RV EF predicts exercise tolerance and survival in
advanced HF (73). However, RV EF is inversely pro-
portional to PAP; thus, this result could simply reflect
the impact of increased PAP. PH has been repeatedly
shown to be associated with decreased exercise ca-
pacity and shorter life expectancy in HF (22,73). The
first study combining pulmonary hemodynamic sta-
tus with RV EF and CO measurements was reported in
2001 in 377 consecutive patients with HF (56). Mean
PAP and RV EF were inversely related; they inde-
pendently predicted death or urgent heart trans-
plantation at multivariate analysis. The prognosis of
patients with PH and preserved RV EF was similar to
that of patients without PH (Figure 6A). Similar
prognostic curves were obtained in a more recent
analysis when using TAPSE instead of RVEF and
echocardiography-estimated sPAP (Figure 6B) (60).

Why is RV function a major determinant of
outcome in HF? A main reason is ventricular inter-
dependence, defined as the forces directly trans-
mitted from one ventricle to the other through the
myocardium and pericardium. As early as in 1910,
Bernheim (74) had postulated that LV hypertrophy
and dilation could compress the right ventricle and
diminish its function. Only a few years later, Hen-
derson and Prince (75) showed that the “Bernheim
effect” could be reversed, as in an isolated cat heart
preparation, pressure and volume loading of one
ventricle decreased the output and function of the
contralateral ventricle.

These pioneering studies mainly demonstrated a
diastolic interaction (i.e., ventricular competition for
filling space within an acutely indistensible pericar-
dium). More recent studies pointed also to the
importance of systolic interaction, by which contrac-
tion of one ventricle supports the contraction of the
other. Measurements of ventricular pressure changes
caused by sudden release of aortic or pulmonary
constriction showed greater pressure coupling in
right-to-left than LV-to-RV interaction (76,77). It is
estimated that 20% to 40% of RV systolic pressure
results from LV contraction and that 4% to 10% of LV
systolic pressure results from RV contraction (78).

In addition to ventricular interdependence, the
thin-walled flow-generator right ventricle is not
designed to cope with brisk increases in PAP, as may
occur because of upstream transmission of increased
PAWP. However, a progressive increase in PAP allows
the right ventricle to adapt by an increased contrac-
tility tomatch the increase in afterload and tomaintain
systemic oxygen transport adapted to metabolic de-
mand. Failure to do so results in larger dimensions,
systemic congestion, and decreased survival (79).
Thus, the adaptation of the right ventricle to increased
loading conditions is (very much as for the left
ventricle) basically homeometric or systolic and be-
comes heterometric through dimension increase when
systolic function fails (80,81). This has been demon-
strated in various animal models of PH (81) and in pa-
tients with PAH or chronic thromboembolic PH (82).
The gold standard of in vivo measured contractility is
end-systolic elastance (Ees), or end-systolic pressure
(ESP) divided by end-systolic volume (ESV). An
acceptable measure of afterload is arterial elastance
(Ea), calculated as ESP divided by stroke volume (SV).
The optimal mechanical coupling of RV function to
afterload corresponds to an Ees/Ea ratio of 1. RV-
arterial coupling allowing RV flow output at a mini-
mal energy cost is at an Ees/Ea ratio of 1.5 to 2. Kuehne
et al. (81) showed that Ees increases in PAH but may be
insufficient to preserve Ees/Ea, indicating RV-arterial
uncoupling. Subsequent studies have shown that the
Ees/Ea ratio may be maintained or decreased in PAH
and in chronic thromboembolic PH (83,84). No such
study has yet been reported in PH on HF.



FIGURE 7 Methods Used to Measure Right Ventricular–Arterial Coupling and Diastolic Stiffness (b)
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The Ees/Ea ratio below which the adaptation of the
right ventricle becomes heterometric with increased
dimensions, ESV and end-diastolic volume (EDV),
filling pressures, and with systemic congestion is not
presently known. The Ees/Ea may be preserved at rest
but decreases during exercise in patients with severe
PH, suggesting a reduced contractile reserve preced-
ing the onset of RV-arterial uncoupling at rest. Thus,
exercise stress testing may help identify a phenotype
of “pending” right HF in severe PH (84).

Determinations of Ees and Ea require instanta-
neous measurements of RV pressure and volume
to generate a pressure-volume loop, obtained by
a decrease of venous return by stepwise inflations
of an inferior vena cava balloon or a Valsalva
maneuver, are quite demanding and difficult to
implement at the bedside. Accordingly, a single-
beat approach has been validated for the right
ventricle (85). The method relies on a maximum
pressure (Pmax), corresponding to the Pmax of a
nonejecting beat calculated from the nonlinear
extrapolations of the early and late systolic portions
of the RV pressure curve, and Ees determined by
a straight-line tangent to the end-systolic portion
of the pressure-volume relationship. Further sim-
plifications have been relatively well validated,
including pressure measurements with a fluid-filled
Swan-Ganz catheter and volume measurements
by magnetic resonance imaging or computed tomo-
graphic angiography, eventually limited to EDV and
ESV measurements.

The pressure-volume loop also offers a diastolic
elastance curve as a gold-standard measure of dia-
stolic function. A diastolic elastance curve has a
curvilinearity that increases with increased EDV and
can be described by an equation that contains a dia-
stolic stiffness coefficient, b. The diastolic stiffness of
the right ventricle correlates with disease severity in
PAH (86). This is a relevant aspect that has not yet
been explored in PH due to HF. These methodological
aspects are illustrated in Figure 7 (87).

Studies on experimental animal models of PH
suggest that failure of Ees to increase and RV
uncoupling occur at lower PAP in the presence of
systemic inflammation, sepsis, or left HF (88). Spe-
cifically, reduction of Ees/Ea from 1.81 to 0.77, which
was restored by milrinone infusion, was observed in a
model of HF with borderline PH (88).

SIMPLIFIED BEDSIDE MEASUREMENTS

OF RV FUNCTION

A simple imaging “volume method” was proposed
by Sanz et al. (89), using the reasoning that



FIGURE 8 Relationship Between PA Compliance and TAPSE/sPAP and Distribution of TAPSE/sPAP in the PVR/PAC Exponential Relationship
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Ees and Ea have a common pressure term and
that, accordingly, the Ees/Ea ratio can be simplified
as a ratio of volumes: Ees/Ea ¼ ESP/ESV/ESP/SV ¼
SV/ESV.

An alternative “pressure method” using right heart
catheterization only assumes mPAP equal to ESP and
simplifies the Ees/Ea ratio by the slope of Pmax �
mPAP on SV divided by mPAP/SV (90): Ees/Ea ¼
(Pmax � mPAP)/SV/mPAP/SV ¼ Pmax/mPAP � 1.

In a recent, larger study of 140 patients with PAH,
both EF and SV/ESV independently predicted sur-
vival, with rigorous receiver-operating characteristic–
defined cutoff values of 32.5 and 53.4, respectively
(91). The relationship between SV/ESV and EF is
hyperbolic, such that SV/ESV is more sensitive to
changes in RV function in less severe disease.

The difference between SV/ESV and EF or SV/EDV
resides in the relatively greater pre-load sensitivity of
EF. It is conceivable that optimal volume control by
diuretic agents and cautious use of vasodilators in
selected patient populations result in the same in-
formation content of both ratios of volumes. It is also
possible that EF becomes even more sensitive to
deterioration in RV systolic function with increase in
volumes. The SV/ESV ratio is probably more infor-
mative in earlier PH stages.

In their study of patients with PH secondary to HF,
Gerges et al. (59) calculated Pmax values on stored RV
pressure curves and estimated Ees/Ea by the pressure
method, Pmax/mPAP � 1. This ratio deteriorated in
CpcPH but was preserved in IpcPH. Thus, worse
prognosis of CpcPH may be attributable to associated
RV failure.

Guazzi et al. (60) recently proposed the use of the
TAPSE/sPAP ratio, which determines RV-arterial
coupling, as TAPSE is a surrogate of contractile
function and sPAP largely reflects afterload. The
TAPSE/sPAP ratio emerged as a potent prognostic
marker in HF (60). A decreased TAPSE/sPAP corre-
lates with depressed Ees/Ea (59) but is probably more
afterload-dependent.

Nonetheless, in 2 studies (59,92), TAPSE/sPAP
emerged as the echocardiography-derived indepen-
dent predictor of CpcPH correlating with PAC
(Figures 8A and 8C) and was scattered in the hyperbolic
relationship of PAC versus PVR according to group
categorization (Figures 8B and 8D). Interestingly, this
ratio accurately stratifies prognosis across the spec-
trum of HF, also including moderately reduced EF, in
agreement with the recent classification in the Euro-
pean Society of Cardiology guidelines (93).

Certainly, it should be remembered that these
numbers may not reflect coupling in advanced stages,
when sPAP decreases because of loss in RV
contractility, and although TAPSE may be severely
depressed, the “normalized” sPAP keeps the ratio
similar to that observed in a subject with elevation of
sPAP and a mild to moderate reduction in TAPSE.

It is interesting that depressed RV-arterial coupling,
however measured, predicts CpcPH or, alternatively,
that CpcPH is a cause of RV failure. Exquisite sensi-
tivity of the right ventricle to afterload in HF is
explained by the fact that cardiac diseases generally do
not spare the right heart, decreased LV contractility
negatively affects RV contractility, and also RV after-
load in these patients increased more than estimated
from PVR because of a disproportionate reduction in
PAC (10). A marked decrease in PAC by long-standing
elevation in PAWP increases pulmonary arterial pulse
pressure, and thereby RV afterload, by a proportional
rise in systolic pressure, as illustrated in Figure 1. Thus,
PVR underestimates afterload, and the right ventricle
uncouples from the PC at lower PAP.

RV-TO-PC COUPLING DURING EXERCISE

Because the right ventricle is functionally coupled to
the PC, their integrated response is of relevance in
different physiological settings (65). Indeed, exercise
provides the most physiological setting for studying
the functional RV reserve in HF (22,94). Interest-
ingly, Borlaug et al. (94) recently found that even
early stages of HFpEF may be paralleled by the same
degree of impaired RV reserve and uncoupling
because of a concurrent increase in LV filling
pressures.

In a study of 97 patients with advanced HFrEF,
RV exercise contractile reserve and RV-to-PC
coupling response to maximal exercise were
analyzed through the relationships of sPAP to TAPSE
and sPAP to CO using stress echocardiography and
cardiopulmonary exercise testing (22). Patients were
categorized into 3 groups according to TAPSE at
rest $16 mm (group A, n ¼ 60) and those with TAPSE
at rest <16 mm, who were further divided into
2 subgroups (group B, n ¼ 19; group C,
TAPSE <15.5 mm, n ¼ 18) according to whether their
respective median TAPSE was higher or lower than
15.5 mm at peak exercise. Group B, at variance with
group C, showed an upward shift of the TAPSE-
versus-sPAP relationship and some degree of favor-
able coupling adaptation during exercise. Thus,
severely impaired RV function at rest may still be
associated with the capacity to improve RV-to-PC
coupling in a proportion of patients with HFrEF
(22). Interestingly, the worst RV-to-PC coupling
pattern was associated with the highest rate of
exercise ventilation inefficiency.
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THERAPEUTIC PERSPECTIVES

AND CONCLUSIONS

Because preservation of RV function is of basic rele-
vance for good outcomes in HF, it seems reasonable
to identify the abnormalities in LV filling and PC as
therapeutic targets, in order to minimize RV after-
load. The first target should be to maintain low LAP,
with the 2-fold aim of reducing congestion and RV
pulsatile loading. These aims, however, may be
insufficient once remodeling of pulmonary arterioles
has occurred, considering that the hypothesis that
good control of LAP will prevent development of pre-
capillary PH is yet to be proven. The second goal is an
ambitious one, because it implies the possibility of
reversing the pathobiology and epigenetics of pul-
monary microvessel disease (38,95).

Overall, hemodynamic phenotyping is still the
method that should drive effective treatment of PH.
From a therapeutic point of view, both IpcPH and
CpcPH benefit from the recommended therapeutic
regimen of HFrEF using beta-blockers, angiotensin-
converting enzyme inhibitors, and spironolactone,
with diuretic agents as needed for the relief of
congestion. It is unknown whether therapies target-
ing the PC and proved efficacious in PAH, endothelin
receptor antagonists, phosphodiesterase-5 inhibitors,
guanylate cyclase activators, or even prostanoids may
be beneficial in CpcPH. In most trials performed in the
past, these drugs were used in unselected pop-
ulations of HF, which may explain the lack of positive
results. However, more effort has recently been un-
dertaken to figure out what patients are “responders”
to interventions potentiating the NO pathway.

Contrasting results were obtained from 2 single-
center studies investigating the effects of
phosphodiesterase-5 inhibition by sildenafil on
hemodynamic status and RV-to-PC coupling (96,97).
The patients included in the positive study had high
PVR, right atrial pressure, and pericardial-mediated
and RV-to-LV interactions suggestive of the CpcPH
phenotype.

Neutral findings have been reported for cyclic
guanosine monophosphate stimulation with riociguat
in HFpEF (98) and HFrEF (99). Recently, the effects of
inhaled inorganic nitrite were tested in patients with
PH and HFpEF, showing a positive effect on PAWP
(100) and, especially, on the PAC-PVR relationship
(101). In a recent substudy of a European registry
including 5,935 patients with PH receiving pulmonary
vasodilators, idiopathic PAH (n ¼ 421), atypical idio-
pathic PAH (>3 risk factors for HF; n ¼ 139), and PH
and HFpEF (n ¼ 226) all showed improvement in
functional class, exercise capacity, and natriuretic
peptides (102). The patients with PH and HFpEF had
very high TPGs (on average 26 mm Hg) and PVR (on
average 7 Wood units), suggestive of CpcPH and
supporting the notion that the CpcPH phenotype may
benefit from therapies targeting the PC, especially
sildenafil because it was the drug administered in a
higher rate.

If future trials of targeted therapies are to be
considered in PH due to HF, it will be essential to
primarily target the less common patients with
CpcPH, who most likely present with pulmonary
vascular disease, relatively higher PVR, and altered
RV function.
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