Early Versus Standard Discharge After Transcatheter Aortic Valve Replacement

A Systematic Review and Meta-Analysis

Rafail A. Kotronias, MBChB, MSc,^{a,b} Michael Teitelbaum, MD,^c John G. Webb, MD,^d Darren Mylotte, MBBCh, MD,^e Marco Barbanti, MD, PhD,^f David A. Wood, MD,^d Brennan Ballantyne, MD,^c Alyson Osborne, MD,^c Karla Solo, MSc,^g Chun Shing Kwok, MBBS, MSc,^{a,h} Mamas A. Mamas, BMBCh, DPhil,^{a,h} Rodrigo Bagur, MD, PhD^{a,c,g}

ABSTRACT

OBJECTIVES This study sought to assess the clinical outcomes of patients undergoing transcatheter aortic valve replacement (TAVR) with early discharge (ED) versus standard discharge (SD) pathways.

BACKGROUND Minimalist approaches for TAVR have been developed targeting different aspects of the procedure such as local anesthesia or sedation, intraprocedural imaging, vascular access, post-operative monitoring and care, and discharge planning. Their incorporation into routine clinical practice aims to reduce length of hospital stay and health care cost utilization without adversely affecting outcomes when compared with standard approaches.

METHODS The authors conducted a search of MEDLINE and EMBASE to identify studies that investigated ED (≤3 days) versus SD in TAVR patients. Random-effects meta-analyses were used to estimate the effect of ED compared with SD with regard to 30-day mortality after discharge, 30-day readmission rate, and need for permanent pacemaker implantation (PPI) following discharge.

RESULTS Eight studies including 1,775 participants (ED, n = 642) fulfilled the inclusion criteria. The mean age was 82.4 years and STS score was 6.7. Meta-analyses evaluating discharge to 30-day mortality (odds ratio [OR]: 0.65; 95% confidence interval [CI]: 0.23 to 1.82; $I^2 = 0\%$) and discharge to 30-day new PPI (OR: 1.61; 95% CI: 0.19 to 13.71; $I^2 = 40\%$) showed no significant difference in an ED compared with a SD strategy. Notably, ED patients were less likely to be readmitted after ED when compared with SD patients (OR: 0.63; 95% CI: 0.41 to 0.98; p = 0.04, $I^2 = 0\%$).

CONCLUSIONS ED following uncomplicated TAVR is safe in terms of discharge to 30-day mortality or need for PPI following discharge. Moreover, ED patients experienced a lower rate of readmissions. These data support the safety of programs aiming an ED pathway in selected TAVR patients. Institutional protocols with the input from different members of the multidisciplinary heart team should be devised to optimize discharge processes to improve health care resource utilization. (J Am Coll Cardiol Intv 2018;11:1759-71) © 2018 by the American College of Cardiology Foundation.

From the "Keele Cardiovascular Research Group, Institute for Applied Clinical Science and Centre for Prognosis Research, Institute of Primary Care and Health Sciences, University of Keele, Stoke-on-Trent, United Kingdom; bOxford University Clinical Academic Graduate School, Oxford University, Oxford, United Kingdom; London Health Sciences Centre, London, Ontario, Canada; Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Galway University Hospitals, National University of Ireland, Galway, Ireland; Division of Cardiology, Cardio-Thoracic-Vascular Department, University of Catania, Catania, Italy; Department of Epidemiology and Biostatistics, Schulich School of Medicine Dentistry, Western University, London, Ontario, Canada; and The Heart Centre, Royal Stoke Hospital, University Hospital of North Midlands Trust, Stoke-on-Trent, United Kingdom. Dr. Webb has been a consultant to Edwards Lifesciences and Abbott Vascular. Dr. Mylotte has been a proctor and consultant for Medtronic and Microport. Dr. Barbanti has been a consultant to Edwards Lifesciences. Dr. Wood has received grant support form Edwards Lifesciences and Abbott Vascular; and has been a consultant to Medtronic. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose

Manuscript received February 26, 2018; revised manuscript received April 18, 2018, accepted April 21, 2018.

ABBREVIATIONS AND ACRONYMS

CI = confidence interval

ED = early discharge

ICU = intensive care unit

LoS = length of stay

OR = odds ratio

PPI = permanent pacemaker implantation

SD = standard discharge

TAVR = transcatheter aortic valve replacement

ranscatheter aortic valve replacement (TAVR) has become the alternative treatment for patients with severe symptomatic aortic stenosis deemed at high or intermediate risk for surgical aortic valve replacement (1,2). Improved and lower profile devices and everincreasing operator and heart team experience has resulted in much improved clinical outcomes and has allowed a new focus on periprocedural care for a rapid recovery and discharge pathways (3,4). "Minimalist"

SEE PAGE 1772

approaches have been developed targeting different aspects of the procedure, such as local anesthesia or sedation, intraprocedural imaging, vascular access, post-operative monitoring and care, and discharge planning (3-7). Single-center studies have shown that adoption of strict, TAVR-specific clinical care pathways helped to identify candidates for safe early discharge (ED) after TAVR (4,8). The incorporation of these strategies into routine clinical

FIGURE 1 PRISMA Flow Diagram Identification Records identified through database searching n = 976Records identified after database search n = 4Screening Records screened Records excluded n = 980n = 924Full-text articles excluded, Eligibility with reasons n = 48**Full-text articles** - 25 Duplicates assessed for eligibility - 20 No extractable data n = 56 2 Editorials - 1 Early discharge cut-off 4 days Included Studies included in meta-analysis n = 8 including 1775 patients

Flow diagram based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).

practice has reduced length of hospital stay (LoS) and health care cost utilization without adversely index procedural outcomes compared with standard approaches (9,10). LoS and 30-day readmission rates are important quality of care indicators and predictors of outcome in the elderly (11); however, considerable differences in LoS (1 to 11 days) are reported in contemporary TAVR registries (12,13). In addition, it is unclear whether an ED following TAVR procedures is associated with an increased risk of early unplanned 30day readmissions. Therefore, the aim of our study was to perform a systematic review and metaanalysis to assess mortality, readmission rates, and need for permanent pacemaker implantation (PPI) at 30 days following an ED versus standard discharge (SD) pathways.

METHODS

SEARCH STRATEGY. We conducted a search of MEDLINE, EMBASE, and conference abstracts, from conception to December 2017 using OvidSP (Ovid Technologies, Norwood, Massachusetts). The terms used were: transcatheter aortic valve implantation OR TAVI OR transcatheter aortic valve replacement OR TAVR AND discharge. Two studies were published while the manuscript was being prepared and were also included in the quantitative synthesis. Institutional review board approval and patient consent were not required because of the systematic review and meta-analysis nature of this study.

STUDY SELECTION. The titles and abstracts yielded by the search were independently screened and extracted by 2 investigators (R.A.K. and M.T.) against the inclusion criteria. Additional studies were retrieved by checking the bibliography of included studies and relevant reviews. The full reports of potentially relevant studies were retrieved, and data were independently extracted on study design, participant characteristics, discharge groups, outcome events, follow-up, and results. Any discrepancies between reviewers were resolved by consensus after consulting a third investigator (R.B.).

ELIGIBILITY CRITERIA. We only included English written studies evaluating ED versus SD in patients undergoing TAVR. Our primary outcomes of interest were mortality from discharge to 30 days and 30-day readmission. The secondary outcome was the need for PPI after discharge to 30 days. The outcomes of interest and follow-up were also extracted on a pre-formatted table. As mentioned in the preceding text, disagreements were resolved by consensus.

TABLE 1 Basel	ine Charac	teristics									
First Author, Year (Ref. #)	Strategy	Mean Age, (yrs)	Male, %	Logistic EuroSCORE	STS Score	Previous Pacemaker	Multivessel Disease, %	LVEF, %	CKD, %	COPD, %	PVD, %
Aldalati, 2018 (19)	Total ED SD	82.6 ± 6.7 81.8 ± 7.7 82.8 ± 6.5	50.2 48 50.5	20.8 ± 10 16.7 ± 9 21.7 ± 11	NA	NA	17.7 14 17	LVEF <30% 12/319 (3.8) 4/56 (7) 8/263 (3)	NA	90/319 (28) 14/56 (5.3) 76/263 (29)	78/319 (25) 8/56 (14) 70/263 (27)
Alkhalil, 2018 (20)	Total ED SD	$82.5 \\ 82.7 \pm 7.5 \\ 82.2 \pm 8.1$	44.4 44.4 44.4	NA	$\begin{array}{c} 8.3 \\ 8.2 \pm 3.9 \\ 8.5 \pm 4.6 \end{array}$	19/108 (17.6) 8/54 (14.8) 11/54 (20.4)	NA	$51.3 \\ 53.3 \pm 12 \\ 51.8 \pm 13$	NA	NA	15/108 (14) 7/54 (13) 8/54 (15)
Rathore, 2017 (22)	Total ED SD	$80.6 \pm 8.5 \\ 81.5 \pm 7.6 \\ 80.3 \pm 8.8$	49 59 46	NA	$6.9 \pm 3.3 \\ 6.3 \pm 2.7 \\ 6.8 \pm 3.4$	15/100 (15) 6/22 (27) 9/78 (12)	NA	52.5 51.6 ± 13.5 53.7 ± 12.5	38/100 (38) 10/22 (45) 28/78 (36)	NA	NA
Lauck, 2016 (4)	Total ED SD	$81.5 \pm 7.9 \\ 81.6 \pm 7.9 \\ 81.3 \pm 7.8$	60.6 59.3 61.3	NA	$6.4 \pm 3.8 \\ 6.5 \pm 3.4 \\ 6.4 \pm 4.1$	NA	NA	LVEF <30% 35/393 (9.0) 7/150 (4.7) 28/243 (12)	NA	46/393 (12) 12/150 (8) 34/243 (14)	NA
Serletis-Bizios, 2016 (23)	Total ED SD	$\begin{array}{c} 84.7 \pm 5.4 \\ 84.4 \pm 5.8 \\ 85.4 \pm 4.8 \end{array}$	52 47 59	$\begin{array}{c} 15.3 \pm 8.5 \\ 15.7 \pm 8.8 \\ 14.7 \pm 8.0 \end{array}$	NA	19/130 (15) 12/76 (16) 7/54 (13)	NA	$63.0 \pm 13.1 \\ 62.7 \pm 13.9 \\ 63.4 \pm 14.1$	NA	NA	8/130 (6) 7/76 (9) 1/54 (2)
Barbanti, 2015 (8)	Total ED SD	$80.0 \\ 81.1 \pm 4.9 \\ 80.7 \pm 5.7$	41.9 43.8 40.8	NA	$6.3 \\ 6.0 \pm 4.2 \\ 6.5 \pm 4.5$	21/267 (7.9) 9/89 (10) 12/178 (6.7)	NA	$51.8 \\ 51.9 \pm 11.5 \\ 51.8 \pm 12.9$	79/267 (30) 26/89 (29) 53/178 (30)	76/267 (29) 20/89 (23) 56/178 (32)	15/267 (5.6) 5/89 (5.6) 10/178 (5.6)
Durand, 2015 (3)	Total ED SD	$84.0 \pm 6.8 \\ 83.7 \pm 6.9 \\ 84.2 \pm 6.2$	43.0 47.9 40.3	$\begin{array}{c} 16.9 \pm 9.6 \\ 15.6 \pm 9.6 \\ 17.6 \pm 9.5 \end{array}$	NA	38/337 (11.3) 20/121 (16.5) 18/216 (8.3)	NA	$\begin{array}{c} 59.0 \pm 16.3 \\ 59.7 \pm 16.3 \\ 58.7 \pm 16.3 \end{array}$	NA	59/337 (17.5) 20/121 (16.5) 39/216 (18.1)	35/337 (10) 15/121 (17) 20/216 (9.3)
Parry-Williams, 2014 (21)	Total	83	58	22	NA	NA	NA	<35%: 18/121 (15)	Cr >200: 7/121 (5.8)	42/121 (34)	28/121 (23)

Values are mean \pm SD, mean, or n/N (%).

CKD = chronic kidney disease; COPD = chronic obstructive pulmonary disease; Cr = creatinine (µmol/l); ED = early discharge; LVEF = left ventricular ejection fraction; NA = not applicable or available; PVD = peripheral vascular disease; SD = standard discharge; STS = Society of Thoracic Surgeons.

Endpoints were reported, when available, in accordance with the Valve Academic Research Consortium-2 (VARC) definitions (14). The reporting of outcomes had to include either crude events in each group or any risk/odds estimate (risk ratio, odds ratio [OR]) with 95% confidence intervals (CIs). There was no restriction based on the design of the study or duration of follow-up. We excluded isolated case reports/case series (≤3 patients), reviews, and editorial comments on the subject. When duplicate reports of the same study were identified, only the report with the most complete dataset and detailed methodology description was included. A flow diagram is provided following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Figure 1) (15).

QUALITY AND RISK OF BIAS ASSESSMENT. A Cochrane Risk Of Bias Assessment Tool: for Non-Randomized Studies of Interventions (ACROBAT-NRSI) (16) was employed to assess the risk of bias of the included studies, and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) (17) was used to assess the strength of evidence.

DATA ANALYSIS. RevMan (Review Manager version 5.3; Nordic Cochrane Centre, Copenhagen, Denmark) was used to perform random- and fixed-effects meta-analyses using the Mantel-Haenszel method to determine pooled OR for dichotomous data with regard to post-TAVR outcomes in patients discharged early (\leq 3 days) versus patients discharged in standard fashion (>3 days). The Cochrane Q-statistic (I^2) was used to assess the consistency among studies with $I^2 < 25\%$ indicating low, $I^2 = 25\%$ to 50% moderate, and $I^2 > 75\%$ high statistical heterogeneity (18). Where there was insufficient data or studies for meta-analysis, we pooled the studies using weighted average or performed narrative synthesis of studies that were too heterogeneous to pool.

RESULTS

STUDY POPULATION. A total of 8 (3,4,8,19-23) observational studies met the inclusion criteria for the meta-analysis (**Figure 1**), including 1,775 participants, 642 of which followed an ED pathway. The mean age was 82.4 \pm 1.5 years, and 50.0% (887 of 1,775) were female. Among studies reporting logistic

Continued on the next page

EuroSCORE, the mean score was 15.9 \pm 0.6 in ED cohorts compared with 19.3 \pm 3.5 in SD patients (3,19,21,23), whereas in those reporting Society of Thoracic Surgeons (STS) Predicted Risk of Mortality score, the mean scores were 6.63 \pm 1.0% and 6.69 \pm 1.0%, respectively (4,8,20,22). Among all TAVR patients, 11.9% (112 of 942) had a previously implanted permanent pacemaker; 15.2% (55 of 362) in the ED group and 9.8% (57 of 580) in the SD group (3,8,20,22,23). Further details on participants baseline characteristics are presented in Table 1.

PROCEDURAL DATA. Three studies used exclusively local anesthesia or conscious sedation in ED and SD patients (3,20,23). In studies employing both general and local anesthesia or conscious sedation, ED patients were more likely to receive local anesthesia or conscious sedation 61.4% (181 of 295) than SD patients 31.4% (215 of 684) (4,8,19). Femoral (99%) and fully percutaneous (97%) access was used in ED patients (3,4,8,19,20,22,23). Similarly, 82% of SD patients had fully percutaneous femoral access, albeit 7% received surgical cutdown and 10% underwent transapical TAVR (3,4,8,19,20,22,23). The

First Author, Year (Ref. #), Country	Procedural Characteristics	Type of Valve, Approach	Time-Frame of Assessment	Outcomes	Early Discharge	Standard Discharge
Serletis-Bizios, 2016 (23)	ED Local anesthesia (100%), contrast:	ED Transfemoral: 100%, SAPIEN-3:	In-hospital and 30 days	Periprocedural myocardial infarction	0/76 (0)	1/54 (1.9)
France	164 \pm 53 ml, fluoroscopy Time:	28/76 (37), SAPIEN-XT:		Stroke	0/76 (0)	1/54 (1.9)
	18 \pm 7 min	47/76 (62)		Life threatening bleeding	0/76 (0)	3/54 (5.6)
	SD	SD		Major bleeding	1/76 (1.3)	9/54 (17)
	Local anesthesia (100%), contrast:	Transfemoral: 100%, SAPIEN-3:		Minor bleeding	6/76 (7.9)	5/54 (9.3)
	163 \pm 63 ml, fluoroscopy time: 20 \pm 11 min	20/54 (38), SAPIEN-XT: 34/54 (63), Direct Flow 1/54 (2)		Major vascular complications	1/76 (1.3)	11/54 (20)
	20 ± 11 111111	(03), Blicet How 1/34 (2)		Minor vascular complications	15/76 (20)	10/54 (19)
				Acute kidney injury	2/76 (2.6)	2/54 (3.7)
				Permanent pacemaker implantation	5/76 (6.6)	11/54 (20)
				Discharge to 30-day mortality	1/76 (1.3)	0/54 (0)
				30-day rehospitalization	3/76 (4)	7/54 (13)
				30-day combined endpoint (death and hospitalization)	4/76 (5.3)	7/54 (13)
Barbanti, 2015 (8)	ED	ED	In-hospital and	Stroke	0/89 (0.0)	2/178 (1.1)
Italy	General anesthesia: 1/89 (1.1),	Transfemoral (100%), SAPIEN:	30 days	Life-threatening bleeding	1/89 (1.1)	10/178 (5.6
	local anesthesia 88/89 (99),	26/89 (29), CoreValve: 60/89		Major bleeding	3/89 (3.4)	11/178 (6.2
	TEE guidance: 0/89 (0)	(67), Lotus: 1/89 (1.1), Portico:		Minor bleeding	3/89 (3.4)	13/178 (7.3
	SD	2/89 (2.2)		Major vascular complications	2/89 (2.3)	16/178 (9.1
	General anesthesia: 1/178 (0.9), local anesthesia 177/178 (99),	SD Transfemoral (100%), SAPIEN:		Minor vascular complications	9/89 (10)	17/178 (9.7
	TEE guidance: 1/178 (0.6)	52/178 (29.1), CoreValve:		Acute kidney injury	13/89 (15)	42/178 (24
	· ga.aa, o (e.e.,	126/178 (71), Lotus: 0/178 (0),		Pacemaker	7/89 (7.9)	33/178 (19
		Portico: 0/178 (0)		Discharge to 30-day mortality*	2/89 (2.2)	3/178 (1.7)
				30-day any bleeding*	1/89 (1.1)	0/178 (0)
				30-day new pacemaker*	0/89 (0)	2/178 (1.1)
				30-day rehospitalization*	1/89 (1.1)	2/178 (1.1)
				30-day combined safety endpoint*	3/89 (3.4)	5/178 (2.8
				30-day acute kidney injury*	5/89 (5.6)	N/A
Durand, 2015 (3) France	ED Local anesthesia (100%), contrast: 184 ± 64 ml, fluoroscopy time:	ED Transfemoral: 100%, SAPIEN-XT: 100%	In-hospital and 30 days	Periprocedural myocardial infarction	0/121 (0)	2/216 (0.9
	19 ± 12 min, procedural time:	SD		Stroke	0/121 (0)	6/216 (2.8
	$84 \pm 44 \text{ min}$	Transfemoral: 100%, SAPIEN-XT:		Life-threatening bleeding	0/121 (0)	22/216 (10
	SD	100%		Major bleeding	6/121 (4.9)	30/216 (14
	Local anesthesia (100%), contrast:			Minor bleeding	7/121 (5.8)	18/216 (8.3
	201 ± 80 ml, fluoroscopy time:			Major vascular complications	7/121 (5.8)	45/216 (21
	20 ± 6.9 min, procedural time:			Minor vascular complications	8/121 (6.6)	17/216 (7.8
	111 \pm 46 min			Acute kidney injury Permanent pacemaker implantation	8/121 (6.6) 4/121 (3.3)	42/216 (19 15/216 (6.9
				Discharge to 30-day mortality	0/121 (0)	2/216 (0.9
				30-day rehospitalization	4/121 (3.3)	9/216 (4.2
				30-day combined primary endpoint	4/121 (3.3)	11/216 (5.1
Parry-Williams, 2014 (21) England	NA	ED Transfemoral 89/121, transapical 23/121, transaortic 9/121, SAPIEN and SAPIEN-XT	30 days	Discharge to 30-day mortality 30-day readmission	0/74 (0) 7/74 (9.5)	0/47 (0) 3/47 (6.4)
		SD Transfemoral, transapical, transaortic, SAPIEN and SAPIEN XT				

balloon-expandable Edwards SAPIEN valve systems (Edwards Lifesciences, Irvine, California) were implanted in 83% of patients and the self-expanding CoreValve (Medtronic, Minneapolis, Minnesota) in

16%; with no difference between the ED and SD groups, 83% and 15% versus 83% and 16%, respectively (3,4,8,19-21,23). Further procedural characteristics are described in **Table 2**.

DISCHARGE PATHWAYS. Five studies (3,8,19,22,23) reported median intensive care unit (ICU) LoS, ED patients stayed ≤1 day, whereas median ICU LoS among SD patients varied from 1 to 4 days. Six studies (3,8,19-21,23) used local discharge processes and pathways, yet only 1 developed a dedicated and standardized TAVR discharge pathway (4). Seven studies (3,4,8,19-21,23) defined ED as a LoS ≤ 3 days, with 1 study (22) setting the cutoff at 1 day. Discharge destinations were reported by 2 studies (4,20), with home being the destination in 88.9% of ED and 66.6% of SD patients, the remaining being discharged to supporting facilities. Further details on discharge strategies are outlined in Table 3.

QUALITY ASSESSMENT. Ascertainment of outcomes was via retrospective review of medical records (3,23). Reported loss to follow-up was <5% in 4 studies (19,22-24), with no information available in the other 4 (4,8,20,21). Two studies (8,20) used propensity-matched analyses to address confounding. Risk of bias assessment according to ACROBAT-NRSI indicated that 6 studies were at serious risk of bias, and 2 were identified as having low risk of bias for both discharge to 30-day mortality and readmission rates, respectively (Table 4). The strength of the evidence as appraised by the GRADE tool is detailed in Table 5.

DISCHARGE TO 30-DAY MORTALITY, READMISSION, AND NEW PPI RATES AT 30 DAYS. A total of 6 studies (3,4,8,19,20,23) reported on discharge to 30day mortality and 8 (3,4,8,19,20,22-24) on 30-day readmissions. Crude outcomes in ED versus SD patients are presented in Table 2. Mortality between discharge and 30 days occurred in 1.1% (19 of 1,775) of patients, and 7.0% (125 of 1,775) of discharged patients were readmitted within 30 days. Two studies (8,23) reported causes of death in ED patients, and 1 (19) reported causes of 30-day readmissions in both groups. Of the 4 deaths that occurred in the ED group, the cause of death was reported in 3. One patient had a fatal myocardial infarction at day 9, and 2 had fatal cerebrovascular accidents (1 embolic ischemic stroke on day 30 associated with poor compliance of anticoagulation for atrial fibrillation, and 1 hemorrhagic stroke on day 11). Three studies (3,8,19) reported on new post-discharge PPI with an incidence of 0.65% (6 of 923).

Meta-analyses evaluating outcomes showed that there were no statistically significant differences in effect estimates for ED as compared with SD patients in terms of discharge to 30-day mortality (OR: 0.65; 95% CI: 0.23 to 1.82; $I^2 = 0\%$) (Figure 2). Notably, ED patients were less likely to be readmitted for any cause within 30 days of discharge (OR: 0.63, 95% CI: 0.41 to 0.98; p = 0.04; $I^2 = 0\%$) (Figure 2). Patients that followed a SD pathway were more likely to have a pre-existing PPI (OR: 1.57; 95% CI: 1.00 to 2.46; p = 0.05; $I^2 = 17\%$); however, no significant difference in effect estimates was found for the need of new PPI after discharge (OR: 1.61; 95% CI: 0.19 to 13.71; $I^2 = 40\%$) (Figure 3). Sensitivity analysis comparing random- versus fixed-effects suggests no difference in effect estimates between the 2 models Table 6. Our confidence in estimates was very low, owing to indirectness, imprecision, risk of bias due to the observational nature of the studies, and potential selective reporting of outcomes (Table 5).

DISCUSSION

The main finding of this meta-analysis of 8 observational studies is that ED by day 3 after TAVR is safe in selected patients, and showing similar rates of discharge to 30-day mortality with a lower 30-day readmission rate after ED. We also found similar rates of need for PPI after discharge. However, this evidence basis consists of low-quality studies confounded by selection bias. Finally, we observed marked variability in institutional discharge programs/protocols, suggesting a limited evidence basis around best practice. Therefore, it is unlikely that this will be defined by future randomized controlled trials, and thus, the current study represents an important synthesis of available evidence.

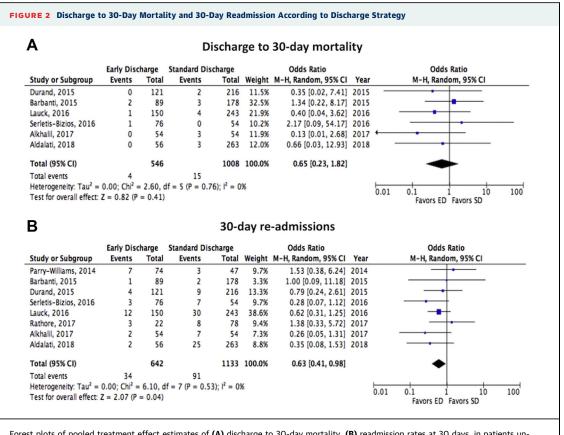
PATIENT ELIGIBILITY. The safety of ED strategies is based on a multidisciplinary team approach, from pre-screening through post-procedural, physiological, functional, and social assessments of patient suitability (3,4,23). The first step is the establishment of a patient's baseline functional and physiological baseline status to determine whether an ED pathway is appropriate. Next, candidates are assessed for suitability for a minimalistic procedure, and employing percutaneous transfemoral access under local anesthesia and sedation. Although patients may be eligible for ED, periprocedural complications can occur and can then render the patient unsuitable for ED. The main aspects of care, although homogeneous thus far, are the introduction of a minimalist approach, early stepdown, early ambulation, and resumption of self-caring activities.

		Discharge	Discharge From	Early		Discharge to	
First Author, Year (Ref. #)	Strategy	From ICU (Days ± Days)	Hospital	Discharge Cutoff	Discharge Home, %	Supported Facility, %	Discharge Program Characteristics
Aldalati, 2018 (19)	ED SD	0.9 ± 1.6 1.4 ± 1.8	3 ± 0.0 8.3 ± 6.0	≤3 days	NA	NA	Patients had general anesthesia (other than 2 who had conscious sedation), and were eligible for early discharge if they had no evidence of conduction disturbance (or already paced), no change in renal function, and no bleeding or requirement for blood transfusion
Alkhalil, 2018 (20)	ED SD	NA	$\begin{array}{c} 2.3 \pm 0.8 \\ 5.5 \pm 2.3 \end{array}$	≤3 days	44/54 (81)* 10/54 (19)*	42/54 (78)* 12/54 (22)*	Patients had minimally invasive strategy using percutaneous transfemoral access, with TTE under local anesthesia and minimal conscious sedation, 24-h temporary pacemaker in ICU
Rathore, 2017 (22)	ED SD	$\begin{array}{c} \textbf{22.1} \pm \textbf{2.2} \ \textbf{h} \\ \textbf{48.5} \pm \textbf{27.5} \ \textbf{h} \end{array}$	$\begin{matrix}1\\3.4\pm2.3\end{matrix}$	<1 day	NA	NA	No general anesthetic, Foley catheter, or central lines used. Safe discharge was based upon lack of complications, early ambulation and family support
Lauck, 2016 (4)	ED SD	<24 h	$\begin{array}{c} 1.3\pm0.8 \\ 3.3\pm0.8 \end{array}$	≤2 days	150/150 (100) 234/243 (96)	0 9/243 (3.7)	Vancouver TAVR discharge pathway
Serletis-Bizios, 2016 (23)	ED SD	24 h 24 h	$\begin{array}{c} 2.2 \pm 0.5 \\ 6.5 \pm 2.6 \end{array}$	≤3 days	NA	NA	All patients underwent transfemoral with local anesthesia and were monitored for 24 h in ICU. Before discharge TTE was obtained
Barbanti, 2015 (8)	ED SD	$\begin{array}{c} 1.2 \pm 0.4 \\ 3.6 \pm 1.9 \end{array}$	$\begin{array}{c} 2.1 \pm 0.8 \\ 6.5 \pm 3.5 \end{array}$	≤3 days	NA	NA	Program based on early de-escalation of pacing wires, ICU monitoring, and physician-led assessments of safety for discharge
Durand, 2015 (3)	ED SD	$\begin{array}{c} 1\pm0.8 \\ 2\pm1.5 \end{array}$	$\begin{array}{c} 3\pm0.8 \\ 6\pm3.0 \end{array}$	≤3 days	NA	NA	All patients underwent transfemoral with local anesthesia and were monitored for 24 h in ICU. Before discharge, TTE was obtained
Parry-Williams, 2014 (21)	ED SD	NA	NA	<4 days	NA	NA	No information available

PERIPROCEDURAL COMPLICATIONS. Typically, serious complications with TAVR occur within the first 24 to 48 h of the procedure (25-30). Therefore, TAVR recipients have been traditionally monitored in high dependency units for signs of hemodynamic instability, vascular, cerebrovascular, and rhythm complications for at least 24 h. Thereafter, the focus of their care changes to early ambulation and resumption of their normal self-care activities, while being less intensively monitored for periprocedural complications, such as arrhythmias or conduction disturbances (3,4,23,31). The latter is considered to be among the key obstacles to ED due to its unpredictability, especially after TAVR with self-expanding or mechanically expandable bioprostheses Notably, 15% of the ED patients in our analysis had previous PPI as opposed to 10% of the SD group (Figure 3). Hence, discharge is not usually delayed in this subset of patients. However, the need for new PPI certainly delays discharge (31,33). Indeed, although 50% of new conduction disturbances occur intraprocedurally, 44% occur within 3 days after intervention (31,34). Early discharge in these patients is assuredly feasible with protocols for arrhythmia monitoring (35-37), or early PPI indications such us same-day implantation (38). It should be pointed out that our study did not find a higher likelihood for new PPI requirement from discharge to 30 days among those following an ED pathway, likely related to the fact that 83% of the studied population received a balloon-expandable TAVR device. Hence, one could argue that our results are only generalizable to TAVR with the balloon-expandable valve because a small proportion (16%) of the included studies used the Medtronic CoreValve system. Nonetheless, Barbanti et al. (8) reported that TAVR with Medtronic CoreValve was not associated with prolonged stay, though a pre-existing PPI was the strongest independent predictor for ED after TAVR.

ED AND CLINICAL OUTCOMES. Our meta-analysis shows that ED strategy is safe in terms of discharge to 30-day mortality. Only 2 studies report on causes of death among ED patients. All deaths were of cardio-vascular origin, but occurring >7 days post-TAVR, therefore, events that would have not been obviated by a prolonged stay. In terms of 30-day VARC complications, inferences cannot be drawn from current studies because their temporal relation to discharge is unknown, and the degree of confounding is

 ${\sf CI}={\sf confidence}$ interval; ${\sf OR}={\sf odds}$ ratio.

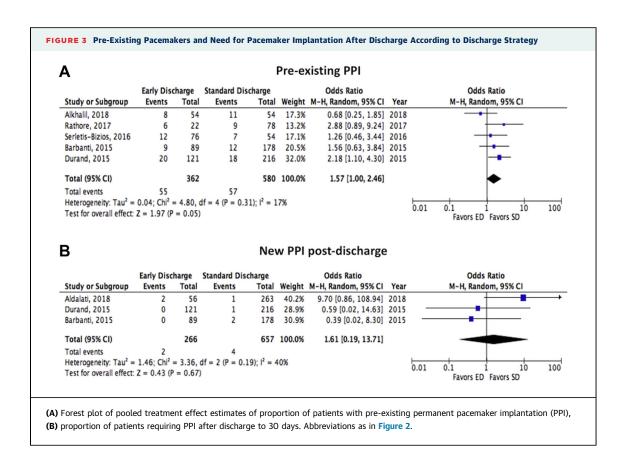

First Author, Year (Ref. #)		Bias in Selection of Participants	Bias in Measurement of Interventions	Bias due to Departures From Intended Interventions	Bias Due to Missing Data	Bias in Measurement of Outcomes	Bias in Selection of Reported Results	Overall Risk of Bias Judgment		
Discharge to 30-day mortality										
Aldalati, 2018 (19)	Serious	Low	Low	Low	Moderate	Low	Low	Serious		
Alkhalil, 2018 (20)	Low	Low	Low	Low	Moderate	Low	Low	Low		
Lauck, 2016 (4)	Serious	Low	Low	Low	Low	Low	Low	Serious		
Serletis-Bizios, 2016 (23)	Serious	Low	Low	Low	Low	Low	Low	Serious		
Barbanti, 2015 (8)	Low	Low	Low	Low	Low	Low	Low	Low		
Durand, 2015 (3)	Serious	Low	Low	Low	Low	Low	Low	Serious		
30-day readmission										
Aldalati, 2018 (19)	Serious	Low	Low	Low	Moderate	Low	Low	Serious		
Alkhalil, 2018 (20)	Low	Low	Low	Low	Moderate	Low	Low	Low		
Rathore, 2017 (22)	Serious	Low	Low	Low	Low	Low	Low	Serious		
Lauck, 2016 (4)	Serious	Low	Low	Low	Low	Low	Low	Serious		
Serletis-Bizios, 2016 (23)	Serious	Low	Low	Low	Low	Low	Low	Serious		
Barbanti, 2015 (8)	Low	Low	Low	Low	Low	Low	Low	Low		
Durand, 2015 (3)	Serious	Low	Low	Low	Low	Low	Low	Serious		
Parry-Williams, 2014 (21)	Serious	Low	Low	Low	Low	Low	Low	Serious		

prohibitively high. Nevertheless, 2 studies (8,20) used a propensity matching methodology to control for confounders and showed that ED is not associated with higher mortality, new PPI, or readmissions.

Interestingly, we found that ED patients were less likely to be readmitted at 30 days, and this is in line with a recently published analysis of the U.S. National Readmissions Database suggesting that

prolonged stay after TAVR was independently associated with 30-day readmissions (39). This effect may be partially explained by a higher comorbidity burden, but also by the increasing incidence of health care-associated infections per day of stay. Because infections account for 13% of readmissions (39) and for 18% to 30% of 30-day mortality in TAVR patients (40,41), a reduction in LoS and resulting

Certainty Assessment								Patients, n/N (%)			Effect		
Studies, N	Study Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	C	Other onsiderations	Early Discharge	Standard Discharge	Relative, OR (95% CI)	Absolute, (95% CI)	Certainty	Importance
Discharge	to 30-day mor	tality											
6	Observational studies	Very serious*	Not serious†	Serious‡	Serious§	c w d	lausible residual onfounding vould reduce the lemonstrated iffect	4/546 (0.7)	15/1,008 (1.5)	0.65 (0.23-1.82)	5 fewer per 1,000 (from 11 fewer to 12 more)	⊕⊖⊖⊖ Very low	Critical
30-day re	admission												
8	Observational studies	Very serious*	Not serious†	Serious‡	Serious§	c w d	lausible residual onfounding vould reduce the lemonstrated iffect	34/642 (5.3)	91/1,133 (8.0)	0.63 (0.41-0.98)	27 fewer per 1,000 (from 2 fewer to 44 fewer)	⊕⊖⊖⊖ Very low	Critical



Forest plots of pooled treatment effect estimates of **(A)** discharge to 30-day mortality, **(B)** readmission rates at 30 days, in patients undergoing transcatheter aortic valve replacement following an early versus standard discharge pathways. ED = early discharge; CI = confidence interval; M-H = Mantel-Haenszel; SD = standard discharge.

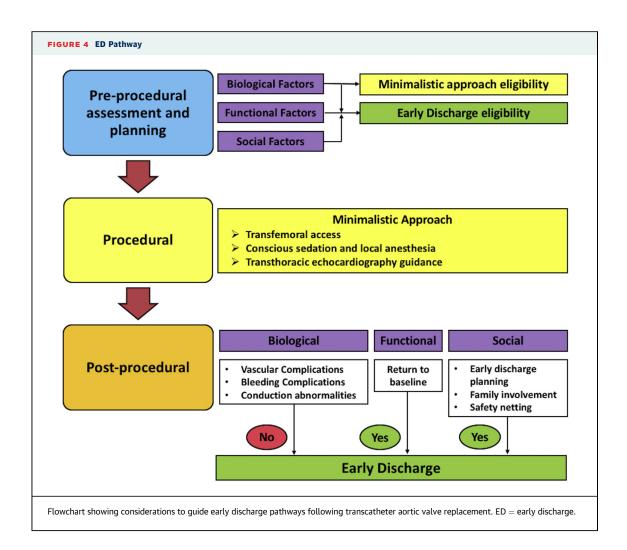
health care-associated infections may drive further improvement in TAVR outcomes and, thus, reduction in resource utilization. In this regard, studies have shown that patients receiving general anesthesia were more likely to incur respiratory complications such as pneumonia (42-44) after TAVR, again, partially explaining a longer LoS. Moreover, surgical femoral access and general anesthesia provide no advantages in terms of procedural complication rates compared with percutaneous femoral access and local anesthesia/conscious sedation. However, the latter was associated with a reduction in LoS by 1 to 1.5 days (45,46).

ED WINDOW. To date, the ED approach has been adopted worldwide; however, no consensus has been reached on optimal LoS for TAVR patients without periprocedural complications. Indeed, although 1 study established a cutoff for an ED strategy at 4 days (47), isolated reports of same-day discharge following

TAVR have also emerged (48). Our meta-analysis suggests that ED (≤3 days) is as safe in terms of discharge to 30-day mortality, readmissions, and new PPI after discharge as compared with SD. Furthermore, Kamioka et al. (49) recently showed that next-day discharge is safe after transfemoral TAVR using balloon-expandable valves and reported no significant differences in terms of mortality and cardiovascular readmission as compared with SD, but next-day discharge patients had lower likelihood of readmission for noncardiovascular causes than SD patients (49). Therefore, the results of the FAST-TAVI (Feasibility And Safety of Early Discharge After Transfemoral Transcatheter Aortic Valve Implantation) (50) and the 3MTAVR (Multidisciplinary, Multimodality, But Minimalist Approach to Transfemoral Transcatheter Aortic Valve Replacement; NCT02287662) registries, dedicated to studying discharge practices after TAVR, are much awaited to further inform current practices. In the meantime,

we propose a framework to guide discharge practices after TAVR (Figure 4).

STUDY LIMITATIONS. The main limitation lies with the small number of studies, patients, and events informing each outcome, and the nonrandomized nature of the included studies that introduce selection bias. Included studies sought to identify predictors of ED and develop pathways protocols. Patients selected for ED are certainly highly selected and likely to be lower risk, although the mean


TABLE 6 Sensitivity Analysis Comparing Random- Versus Fixed-Effects Models

Outcome	Random-Effects Model	Fixed-Effects Model
Discharge to 30-day mortality	0.65 (95% CI: 0.23-1.82)	0.58 (95% CI: 0.22-1.51)
30-day readmissions	0.63 (95% CI: 0.41-0.98)	0.61 (95% CI: 0.40-0.93)
New pacemaker permanent implantation	1.61 (95% CI: 0.19-13.7)	1.49 (95% CI: 0.37-5.91)

Sensitivity analysis comparing random- versus fixed-effects shows no changes in effect estimates between the 2 models.

 ${\sf CI}={\sf confidence}$ interval.

reported STS score was 6% in our pooled studies. On the other hand, there are many issues that go into the decision-making process that are not accounted by pre-operative risk scores and/or other measurable variables. Therefore, procedural strategies were heterogeneous amongst included studies reflecting interinstitutional variability and preferences. Also, the decision to follow an ED strategy was at the discretion of the heart team and without a consistent cutoff in terms of days. Importantly, programs discharging patients early tend to be more experienced, and this results in better outcomes, regardless of the discharge pathway. Individual-patient data were not available, precluding, therefore, adjustments for any differences in baseline clinical data or type of TAVR device, for further comparisons across the cohorts. Hence, given that more than 80% of this analysis included patients who underwent TAVR with the balloon-expandable valve, our results must be interpreted accordingly. Although randomized controlled trials may help determine the ideal pathway to follow, these might be difficult to undertake. Certainly, more data must be accrued to better characterize the determinants and predictors of ED.

CONCLUSIONS

Early discharge following uncomplicated TAVR is safe in selected patients without having a negative impact on discharge to 30-day mortality, readmission rates, and need for PPI following discharge. These data support the safety of current programs aiming an ED pathway in selected patients undergoing TAVR. Institutional protocols with the input from different members of the multidisciplinary heart team should be devised to optimize discharge pathways and, hence, help improve health care resource utilization.

ADDRESS FOR CORRESPONDENCE: Dr. Rodrigo Bagur, University Hospital, London Health Sciences Centre, Western University, 339 Windermere Road, N6A 5A5 London, Ontario, Canada. E-mail: rodrigobagur@yahoo.com.

PERSPECTIVES

WHAT IS KNOWN? Contemporary TAVR series show a wide variation in terms of length of stay after the procedure, and this is despite increasing operator experience, improved and lower profile devices, and adoption of minimalistic approaches.

WHAT IS NEW? Early discharge (≤3 days) strategy in uncomplicated TAVR is as safe as standard discharge in terms of discharge to 30-day mortality, readmission rates, and new pacemaker implantation after discharge.

WHAT IS NEXT? Studies examining the cost-effectiveness of early discharge strategies of the established balloon-expandable and self-expanding devises are required. The safety of early discharge strategies for newer TAVR devices needs to be further studied.

REFERENCES

- **1.** Adams DH, Popma JJ, Reardon MJ, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med 2014; 370:1790-8.
- **2.** Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 2011;364: 2187-98.
- **3.** Durand E, Eltchaninoff H, Canville A, et al. Feasibility and safety of early discharge after transfemoral transcatheter aortic valve implantation with the Edwards SAPIEN-XT prosthesis. Am J Cardiol 2015;115:1116-22.
- 4. Lauck SB, Wood DA, Baumbusch J, et al. Vancouver Transcatheter Aortic Valve Replacement Clinical Pathway: minimalist approach, standardized care, and discharge criteria to reduce length of stay. Circ Cardiovasc Qual Outcomes 2016;9: 312-21.
- **5.** Motloch LJ, Rottlaender D, Reda S, et al. Local versus general anesthesia for transfemoral aortic valve implantation. Clin Res Cardiol 2012;101: 45-53.
- **6.** Attizzani GF, Ohno Y, Latib A, et al. Transcatheter aortic valve implantation under angiographic guidance with and without adjunctive transesophageal echocardiography. Am J Cardiol 2015;116:604-11.
- 7. Nakamura M, Chakravarty T, Jilaihawi H, et al. Complete percutaneous approach for arterial access in transfemoral transcatheter aortic valve replacement: a comparison with surgical cut-down and closure. Catheter Cardiovasc Interv 2014;84: 293-300
- **8.** Barbanti M, Capranzano P, Ohno Y, et al. Early discharge after transfemoral transcatheter aortic valve implantation. Heart 2015;101:1485–90.
- **9.** Babaliaros V, Devireddy C, Lerakis S, et al. Comparison of transfemoral transcatheter aortic valve replacement performed in the catheterization laboratory (minimalist approach) versus hybrid operating room (standard approach): outcomes and cost analysis. J Am Coll Cardiol Intv 2014;7:898–904.
- **10.** Fröhlich GM, Lansky AJ, Webb J, et al. Local versus general anesthesia for transcatheter aortic valve implantation (TAVR): systematic review and meta-analysis. BMC Medicine 2014;12:41.
- **11.** Nobili A, Licata G, Salerno F, et al. Polypharmacy, length of hospital stay, and in-hospital mortality among elderly patients in internal medicine wards. The REPOSI study. Eur J Clin Pharmacol 2011;67:507–19.
- **12.** Gilard M, Eltchaninoff H, lung B, et al. Registry of transcatheter aortic-valve implantation in highrisk patients. N Engl J Med 2012;366:1705-15.
- **13.** Holmes DR, Nishimura RA, Grover FL, et al. Annual outcomes with transcatheter valve therapy. Ann Thorac Surg 2016;101:789–800.
- **14.** Kappetein AP, Head SJ, Généreux P, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus

- document (VARC-2) \dagger . Eur J Cardiothorac Surg 2012;42:S45-60.
- **15.** Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med 2010;152:726–32.
- **16.** Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011;343: d5928
- **17.** Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924-6.
- **18.** Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003:327:557-60.
- **19.** Aldalati O, Keshavarzi F, Kaura A, et al. Factors associated with safe early discharge after transcatheter aortic valve implantation. Cardiol J 2018:25:14–23.
- **20.** Alkhalil A, Lamba H, Deo S, et al. Safety of shorter length of hospital stay for patients undergoing minimalist transcatheter aortic valve replacement. Catheter Cardiovasc Interv 2018;91: 345–53
- **21.** Parry-Williams G, de Belder M, Bandali A, Owens WA, Goodwin DMA. Safety of selective early discharge following transcatheter aortic valve implantation (abstr). Heart 2014;100 Suppl:A49.
- **22.** Rathore S, Latyshev Y, Emore S, Rowe J, Foerst J. Safety and predictors of next day discharge after elective transfemoral transcatheter aortic valve replacement. Cardiovasc Revasc Med 2017:18:583-7.
- **23.** Serletis-Bizios A, Durand E, Cellier G, et al. A prospective analysis of early discharge after transfemoral transcatheter aortic valve implantation. Am J Cardiol 2016;118:866-72.
- **24.** Mallikethi-Reddy S, Akintoye E, Telila T, et al. Transcatheter aortic valve implantation in the United States: predictors of early hospital discharge. J Interv Cardiol 2017;30:149-55.
- **25.** Tay ELW, Gurvitch R, Wijesinghe N, et al. A high-risk period for cerebrovascular events exists after transcatheter aortic valve implantation. J Am Coll Cardiol Intv 2011;4:1290–7.
- **26.** Miller DC, Blackstone EH, Mack MJ, et al. Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: Occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial. J Thorac Cardiovasc Surg 2012;143: 832–43. et 3.
- **27.** Bagur R, Kwok CS, Nombela-Franco L, et al. Transcatheter aortic valve implantation with or without preimplantation balloon aortic valvuloplasty: a systematic review and meta-analysis. J Am Heart Assoc 2016;5(6):e003191.
- **28.** Martin GP, Sperrin M, Bagur R, et al. Pre-implantation balloon aortic valvuloplasty and clinical outcomes following transcatheter aortic valve implantation: a propensity score analysis of the UK

- Registry. J Am Heart Assoc 2017;6(2). 116. 004695.
- **29.** Bagur R, Solo K, Alghofaili S, et al. Cerebral embolic protection devices during transcatheter aortic valve implantation: systematic review and meta-analysis. Stroke 2017;48:1306-15.
- **30.** Kotronias RA, Kwok CS, George S, et al. Transcatheter aortic valve implantation with or without percutaneous coronary artery revascularization strategy: a systematic review and meta-analysis. J Am Heart Assoc 2017;6(6):005960.
- **31.** Bagur R, Rodés-Cabau J, Gurvitch R, et al. Need for permanent pacemaker as a complication of transcatheter aortic valve implantation and surgical aortic valve replacement in elderly patients with severe aortic stenosis and similar baseline electrocardiographic findings. J Am Coll Cardiol Inty 2012:5:540–51.
- **32.** Bagur R, Choudhury T, Mamas MA. Transcatheter aortic valve implantation with the repositionable and fully retrievable Lotus Valve System(TM). J Thorac Dis 2017;9:2798-803.
- **33.** Erkapic D, De Rosa S, Kelava A, Lehmann R, Fichtlscherer S, Hohnloser SH. Risk for permanent pacemaker after transcatheter aortic valve implantation: a comprehensive analysis of the literature. J Cardiovasc Electrophysiol 2012;23:391–7.
- **34.** Ozier D, Zivkovic N, Elbaz-Greener G, Singh SM, Wijeysundera HC. Timing of conduction abnormalities leading to permanent pacemaker insertion after transcatheter aortic valve implantation. a single-centre review. Can J Cardiol 2017; 33:1660-7.
- **35.** Naveh S, Perlman GY, Elitsur Y, et al. Electrocardiographic predictors of long-term cardiac pacing dependency following transcatheter aortic valve implantation. J Cardiovasc Electrophysiol 2017;28:216–23.
- **36.** Nazif TM, Dizon José M, Hahn RT, et al. Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement. J Am Coll Cardiol Intv 2015;8: 60–9.
- **37.** Rivard L, Schram G, Asgar A, et al. Electrocardiographic and electrophysiological predictors of atrioventricular block after transcatheter aortic valve replacement. Heart Rhythm 2015;12:321–9.
- **38.** Osman F, Krishnamoorthy S, Nadir A, Mullin P, Morley-Davies A, Creamer J. Safety and cost-effectiveness of same day permanent pacemaker implantation. Am J Cardiol 2010;106:383-5.
- **39.** Kolte D, Khera S, Sardar MR, et al. Thirty-day readmissions after transcatheter aortic valve replacement in the United States: insights from the Nationwide Readmissions Database. Circ Cardiovasc Interv 2017;10:e004472.
- **40.** Xiong T-Y, Liao Y-B, Zhao Z-G, et al. Causes of death following transcatheter aortic valve replacement: a systematic review and meta-analysis. J Am Heart Assoc 2015:4:e002096.
- **41.** Van Mieghem NM, van der Boon RM, Nuis R-J, et al. Cause of death after transcatheter aortic

valve implantation. Catheter Cardiovasc Interv 2014;83:E277–82.

- **42.** Covello RD, Ruggeri L, Landoni G, et al. Transcatheter implantation of an aortic valve: anesthesiological management. Minerva Anestesiol 2010;76:100–8.
- **43.** Goren O, Finkelstein A, Gluch A, Sheinberg N, Dery E, Matot I. Sedation or general anesthesia for patients undergoing transcatheter aortic valve implantation-does it affect outcome? An observational single-center study. J Clin Anesth 2015; 27:385–90.
- **44.** Palermo C, Degnan M, Candiotti K, Salerno T, de Marchena E, Rodriguez-Blanco Y. Monitored anesthesia care versus general anesthesia: experience with the Medtronic CoreValve. J Cardiothorac Vasc Anesth 2016;30:1234-7.
- **45.** Ando T, Briasoulis A, Holmes AA, Takagi H, Slovut DP. Percutaneous versus surgical cut-down access in transfemoral transcatheter aortic valve replacement: a meta-analysis. J Card Surg 2016; 31:710–7.
- **46.** Ehret C, Rossaint R, Foldenauer AC, et al. Is local anaesthesia a favourable approach for transcatheter aortic valve implantation? A systematic review and meta-analysis comparing local and general anaesthesia. BMJ Open 2017;7: e016321.
- **47.** Noad RL, Johnston N, McKinley A, et al. A pathway to earlier discharge following TAVI: Assessment of safety and resource utilization. Catheter Cardiovasc Interv 2016;87:134–42.
- **48.** Généreux P, Demers P, Poulin F. Same day discharge after transcatheter aortic valve

- replacement: are we there yet? Catheter Cardiovasc Interv 2016;87:980-2.
- **49.** Kamioka N, Wells J, Keegan P, et al. Predictors and clinical outcomes of next-day discharge after minimalist transfemoral transcatheter aortic valve replacement. J Am Coll Cardiol Intv 2018;11: 107-15.
- **50.** Barbanti M, Baan J, Spence MS, et al. Feasibility and Safety of Early Discharge After Transfemoral Transcatheter Aortic Valve Implantation: rationale and design of the FAST-TAVI registry. BMC Cardiovasc Disord 2017; 17:259.

KEY WORDS aortic stenosis, early discharge, readmission, TAVR, transcatheter