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Abstract
In daily clinical practice, clinicians integrate available data to ascertain the diagnostic and prognostic probability of a disease or
clinical outcome for their patients. For patients with suspected or known cardiovascular disease, several anatomical and func-
tional imaging techniques are commonly performed to aid this endeavor, including coronary computed tomography angiography
(CCTA) and nuclear cardiology imaging. Continuous improvement in positron emission tomography (PET), single-photon
emission computed tomography (SPECT), and CT hardware and software has resulted in improved diagnostic performance
and wide implementation of these imaging techniques in daily clinical practice. However, the human ability to interpret, quantify,
and integrate these data sets is limited. The identification of novel markers and application of machine learning (ML) algorithms,
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Preamble
The European Association of Cardiovascular Imaging (EACVI) pro-
motes excellence in clinical diagnosis, research, technical development,
and education in cardiovascular imaging to improve the standardization
of CVI practice in Europe. The European Association of Nuclear
Medicine (EANM) is a professional non-profit medical association that
facilitates communication worldwide between individuals pursuing clin-
ical and research excellence in nuclear medicine. The EANM was
founded in 1985. EACVI and EANM members are physicians, technol-
ogists, and scientists specializing in the research and practice of nuclear
medicine.
The EACVI and EANM will periodically define new documents for
nuclear medicine and (hybrid) nuclear cardiology practice to help ad-
vance the science of nuclear medicine and to improve the quality of
service to patients throughout the world. Existing practice documents will
be reviewed for revision or renewal, as appropriate, on their fifth anni-
versary or sooner, if indicated.
Each practice document, representing a policy statement by the EACVI/
EANM, has undergone a thorough consensus process inwhich it has been
subjected to extensive review. The EACVI and EANM recognize that the
safe and effective use of diagnostic nuclear medicine imaging requires
specific training, skills, and techniques, as described in each document.
Reproduction or modification of the published practice documents by
those entities not providing these services is not authorized.
These practice documents are an educational tool designed to assist prac-
titioners in providing appropriate care for patients. They are not inflexible
rules or requirements of practice and are not intended, nor should they be
used, to establish a legal standard of care. For these reasons and those set

forth below, both the EACVI and the EANM caution against the use of
these documents in litigation in which the clinical decisions of a practi-
tioner are called into question.
The ultimate judgment regarding the propriety of any specific procedure
or course of action must be made by the physician or medical physicist in
light of all the circumstances presented. Thus, there is no implication that
an approach differing from these documents, standing alone, is below the
standard of care. To the contrary, a conscientious practitioner may respon-
sibly adopt a course of action different from that set forth in the docu-
ments when, in the reasonable judgment of the practitioner, such course
of action is indicated by the condition of the patient, limitations of avail-
able resources, or advances in knowledge or technology subsequent to
publication of the document.
The practice of medicine includes both the art and the science of the
prevention, diagnosis, alleviation, and treatment of disease. The variety
and complexity of human conditions make it impossible to always reach
the most appropriate diagnosis or to predict with certainty a particular
response to treatment.
Therefore, it should be recognized that adherence to these documents will
not ensure an accurate diagnosis or a successful outcome. All that should
be expected is that the practitioner will follow a reasonable course of
action based on current knowledge, available resources, and the needs
of the patient to deliver effective and safe medical care. The sole purpose
of these documents is to assist practitioners in achieving this objective.
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including deep learning (DL) to cardiovascular imaging techniques will further improve diagnosis and prognostication for
patients with cardiovascular diseases. The goal of this position paper of the European Association of Nuclear Medicine
(EANM) and the European Association of Cardiovascular Imaging (EACVI) is to provide an overview of the general concepts
behind modern machine learning-based artificial intelligence, highlights currently prefered methods, practices, and computation-
al models, and proposes new strategies to support the clinical application of ML in the field of cardiovascular imaging using
nuclear cardiology (hybrid) and CT techniques.

Keywords Position paper . Machine learning . Deep learning . Cardiovascular . Multimodality imaging

Introduction

In daily clinical practice, clinicians integrate available data to
ascertain the diagnostic and prognostic probability of a disease
or clinical outcome for their patients. For patients with
suspected or known cardiovascular disease, several anatomi-
cal and functional imaging techniques are commonly per-
formed to aid this endeavor, including coronary computed
tomography angiography (CCTA) and nuclear cardiology im-
aging. Continuous improvement in positron emission tomog-
raphy (PET), single-photon emission computed tomography
(SPECT), and CT hardware and software has resulted in im-
proved diagnostic performance and wide implementation of
these imaging techniques in the daily clinical practice.
However, the human ability to interpret, quantify, and inte-
grate these data sets are limited. The identification of novel
markers and application ofmachine learning (ML) algorithms,
including deep learning (DL) to cardiovascular imaging tech-
niques will further improve diagnosis and prognostication for
patients with cardiovascular diseases [1].

Goal

This position paper of the European Association of Nuclear
Medicine (EANM) and the European Association of
Cardiovascular Imaging (EACVI) provides an overview of
the general concepts behind modern machine learning-based
artificial intelligence; highlights currently prefered methods,
practices, and computational models; and proposes new strat-
egies to support the clinical application of ML in the field of
cardiovascular imaging using nuclear cardiology (hybrid) and
CT techniques.

Background

Artificial intelligence (AI) is a general term used to describe
computational processes that mimic or surpass human intelli-
gence [2]. For a system to be intelligent, it needs to think and
act humanly (we cannot distinguish it from other humans’
thoughts and actions) and rationally (it decides and responds
optimally under all circumstances) [3]. Similar to the way

humans learn, AI algorithms require many training examples
to accomplish a task with confidence. This has led to a more
general formalization of AI, which defines intelligent algo-
rithms as ones that increase their performance in a given task
(evaluated by some performance metric) proportional to the
amount of experience they possess [4] (Fig. 1).

At the core of AI processes is machine learning (ML), an
umbrella term for statistical and analytical techniques that ac-
complish a classification or prediction task without being ex-
plicitly programmed for that purpose. ML approaches in im-
aging require expert-engineered image characteristics that are
important for the classification or regression task at hand. The
extracted features are subsequently used as input to a statisti-
cal classifier that performs the task.

Statistical ML analysis can be used to assess many features
obtained from medical images. There are over a hundred dif-
ferent statistical classifiers in ML. Some can be seen as evo-
lutions of regression techniques and some are based on con-
cepts mimicking the way humans think (i.e., decision trees). A
common feature of these techniques is that they are capable of
modelling complex non-linear relationships, allowing the
model to better fit the data. This means that the data need to
be diverse and representative to minimize the chance of
overfitting the model and losing generalizability. In medical
imaging, we can use the pixel values themselves as inputs for
ML, or we can generate features from images that aim to
quantify different aspects of the image (Fig. 2). The process
of extracting a very large set of quantitative features mostly
describing the shape and texture is called radiomics. This gen-
erative technique aims to extract a very large set of quantita-
tive features frommedical images that describe the texture and
geometry of the image to create big-data databases for ML
analysis [5].

Deep learning (DL) is a subset of ML algorithms,
which uses artificial neural networks to filter input data
through a series of layers. The main property of DL is that
the models automatically perform a search and selection
of the most relevant features learn, and learn directly from
the data through an optimization process. In tasks involv-
ing images, convolutional neural networks (CNN) are of-
ten used. CNNs directly process images through a series
of connected layers in order to deliver image classification
and regression tasks.
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In ML, the process of learning can be undertaken in
several distinct ways. The two most used learning ap-
proaches are supervised and unsupervised learning. In
supervised learning, labelled data is available to the
ML or DL algorithm during the training process, such
as the presence of an imaging finding (e.g., coronary
artery calcification), disease (e.g., amyloidosis), or car-
diovascular outcome (e.g., myocardial infarction) is pro-
vided as the ground truth against which the algorithm’s
output is compared. On the other hand, unsupervised
learning does not require labelled data during training.
Instead it tries to identify patterns and clusters itself
within data (e.g., new subgroups of patients with heart
failure). Reinforcement learning is a different technique
where the ML agent learns from its environment and
experiences based on feedback from rewards and pun-
ishment, such as those used to train AlphaGo to play
the board game Go and the self-driving algorithm of

Tesla. Obtaining labelled data in medical image analysis
can be time-consuming and expensive, and a variety of
methods have been developed to address this issue.
Transfer learning involves the use of pre-trained models
(e.g., DL network architectures), which can be applied
to a new classification task. This enables the transfer of
knowledge from one domain with available/abundant la-
belled data (e.g., facial recognition) to another domain
(e.g., medical imaging), thereby reducing the require-
ments on the amount of training data required in the
new domain. Weak supervision involves the use of
noisy, limited, or imprecisely labelled data for super-
vised learning. Finally, Semi-supervised learning in-
volves a combined approach involving a small number
of labelled data and a larger volume of unlabelled data
to reduce the need for labelled training data. Despite the
limitations of the previous two methods, accurate models
can be created if there is a large volume of data.

Artificial Intelligence

Theory and application 

of systems able to perform

human-level

intelligence tasks

Machine Learning

Algorithms that optimize

their performance

through iterative

exposure to data

Deep Learning

Deep artificial

Neural Networks

(e.g. convolutional, recurrent,

generative adversarial, etc.)

Fig. 1 Conceptual Framework. Modified from Juarez-Orozco et al. [37]
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Fig. 2 Artificial intelligence assisted image analysis. Artificial
intelligence is currently fueled by machine learning algorithms, which
can be roughly classified into: classical machine learning models and

deep learning models. These can be used in a variety of imaging tasks,
including pre-processing, image analysis, and image interpretation. ML
machine learning
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General aspects of AI in cardiovascular
imaging

There are many tasks in cardiovascular imaging that may ben-
efit from ML. First, general potential applications of AI in
cardiovascular imaging are discussed, followed by imaging
modality specific AI application (Fig. 2).

Image acquisition and reconstruction

In the past decade, image reconstruction algorithms have
evolved in parallel with imaging hardware allowing for dra-
matic improvements in image qualitative and quantitative ac-
curacy, resulting in a reduction in acquisition times and/or
radiation exposure. In order to achieve such improved perfor-
mance, different data corrections have been accurately
modelled and incorporated [6, 7], within iterative reconstruc-
tion algorithms, which may impact their computational time
efficiency in cardiovascular imaging [8–11]. Although current
iterative algorithms used in clinical practice provide excellent
image quality, there are issues concerning the variability in
convergence rate as a function of activity concentrations in
the different tissues of interest. There is clearly room for fur-
ther improvements, particularly within the context of low ra-
diation exposure and parametric imaging. Image reconstruc-
tion using DL methods is not as widely explored as in other
areas of cardiovascular imaging, such as image segmentation
and classification tasks.Most current implementations are em-
bedded in classical iterative reconstruction algorithms (e.g.,
denoising of successive image estimations in each iteration)
[12]. In addition, ML analysis may be performed on the raw
data output from scanners, bypassing the image reconstruction
step altogether [13]. A few direct DL reconstruction ap-
proaches have been proposed, allowing the creation of recon-
structed images from raw data [14–17]. There is also a sub-
stantial body of work concerning the use of DL methods for
data corrections (e.g., attenuation, scatter) during the recon-
struction process [15, 18] and image post-processing algo-
rithms (denoising, super-resolution, artefact removal)
[19–21]. DL methods can also be used to reduce motion arti-
fact in cardiac imaging, more frequently used at present in
MRI [22]. Although these first implementations demonstrate
the feasibility of DL approaches for tomographic reconstruc-
tion and associated data corrections, there is a clear lack of
comparative studies, limiting the ability to assess their robust-
ness and quantitative accuracy in different clinical scenarios
compared to current state of the art iterative reconstruction
frameworks [23].

Image segmentation

Image segmentation is a process in which an image is
subdivided into anatomically meaningful parts/segments

[24], and it represents one of the most “mature” appli-
cations of DL in medical imaging in general, but also
specifically in cardiovascular imaging [25]. U-NET is a
good example of a widely used segmentation network.
U-NET in its 2D and 3D implementation is the current
state-of-the-art segmentation algorithm used for a variety
of imaging modalities and clinical applications and has
shown in different recent segmentation challenges its
strong potential to become the state-of-the-art in medical
image segmentation [26].

Image registration

Accurate registration of images is important for hybrid and
multimodality imaging such as PET/CT and PET/MR, and
some investigators have demonstrated the potential for im-
provements in image registration accuracy for anatomical
and functional image deformations [26, 27]. Moreover, this
approach can help with correction of both physiological (car-
diac, respiratory) and involuntary motion. However, clearly
more work is needed in order to demonstrate the potential
interest of DL-based approaches relative to current state-of-
the-art.

Image analysis, precision phenotyping, disease
reclassification, and risk stratification

Recently, there has been increasing interest in the use of
imaging (bio) markers in medical imaging. The additive
value of radiomics and ML (especially through DL) will
on the one hand greatly increase the amount of infor-
mation accessible from images, and on the other, facil-
itate its integration in order to amplify our insights into
cardiovascular pathological states [28, 29]. This new
information will allow for precision phenotyping and a
more accurate classification of diseases, potentially
changing our current taxonomies [30]. The large major-
ity of radiomics work in medical imaging for cardiac
applications has been in the field of MR and CT [31],
with only little work as yet in the field of nuclear med-
ical imaging [32, 33].

The ultimate goal of imaging is to better understand
the clinical status of the patient and assess the risk of
subsequent cardiovascular events. AI techniques can uti-
lize information from multiple sources and have the
potential to make decisions considering all available in-
formation. This paves the road to revolutionize medical
care as it has the potential to provide more accurate and
more individual risk prediction and thereby may help in
better medication prescription and the use of more in-
vasive (therapeutic) interventions [29], although there is
a need for a more rigorous multi-center validation of the
developed predictive and prognostic models.
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AI in cardiovascular SPECT (CT) and PET (CT)

AI is rapidly permeating into nuclear cardiac imaging taking
advantage of the large existing and standardized imaging da-
tabase available in this field [34, 35]. Given that automated
imaging processing and analyses have been used in nuclear
imaging for 20 years, it is likely that the benefits of
implementing AI approaches could be first evaluated in these
imaging databases [36]. Currently, the unfolding of AI in car-
diac SPECT/CT and PET/CT imaging has shown utility in
three main areas of interest, namely: automation of image
detection and segmentation, identification of patients with ob-
structive coronary artery disease (CAD), and risk assessment
of cardiovascular events [37, 38].

Automatic location, reorientation, and segmentation of the
left ventricle in SPECT and PET images is achieved with
dedicated software able to process both types of nuclear im-
aging data and has been boosted by the implementation ofML
[39]. Such improvements in the automated analysis have dem-
onstrated close correlation with visual scoring of myocardial
perfusion images performed by expert readers, supporting
their robustness and utility [40].

Both ML and DL methods have been studied to estimate
the probability of obstructive CAD. For instance, a single-
centre study demonstrated that ML provided with SPECT
myocardial perfusion imaging (MPI) and clinical data of
1181 patients showed higher AUC (0.94 ± 0.01) than total
perfusion deficit (0.88 ± 0.01) or visual read out, for the de-
tection of obstructive CAD as defined by invasive angiogra-
phy [31]. ML was also evaluated in the multi-centre REFINE
SPECT (REgistry of Fast Myocardial Perfusion Imaging with
NExt generation SPECT) registry [41]. The ML algorithm
integrating 18 clinical, 9 stress test and 28 imaging variables
from 1980 patients showed an AUC of 0.79 [0.77, 0.80],
surpassing that of regional stress total perfusion deficit
(TPD) 0.71 [0.70, 0.73] or ischemic TPD 0.72 [0.71, 0.74]
in predicting per-vessel chance of early coronary revasculari-
zation [34]. In the same registry, DL was utilized in the form
of a three-fold feature extraction convolutional layer plus three
fully connected layers for analysing SPECT myocardial per-
fusion raw data and quantitative polar maps of 1638 patients
[42]. The output generated a pseudo-probability of CAD per
vessel-region and per individual patient and showed a discrete
AUC of 0.80 for the detection of ≥ 70% stenosis, that none-
theless outperformed TPD [32]. The DL approach was
adapted to a joint analysis of 2-view (upright and supine) data
from dedicated cardiac scanners and evaluated in repeated
external validation in 1160 patients, improving current perfu-
sion analysis in prediction of obstructive CAD [43]. Such
reports have explored the value of clinical and imaging data
integration and represent the foundation for further generation
of independent systems that provide an automatic interpreta-
tion of SPECT and PET images. Important is to realize that the

current data needs to be prospectively evaluated/validated in
clinical trials.

The prognostic value of ML [44, 45] and DL algorithms
[27] has also been explored in SPECT and PET imaging of
CAD. A large analysis of data considering 28 clinical vari-
ables, 17 stress test, and 25 SPECT imaging variables from
2619 patients recently showed the prognostic utility of inte-
grating clinical and imaging-derived numerical data. The
study demonstrated a predictive accuracy for 3-year risk of
major adverse cardiovascular events (MACE) (AUC = 0.81
[0.78, 0.83]) beyond existing visual or automated perfusion
assessments [44]. In a recent study in 20,414 patients, Hu et al.
demonstrated the potential application of ML using the
XGboost method for the safe cancellation of a rest scan after
the stress scan by assigning an AI-based MACE risk score to
patients. This approach has demonstrated a much more accu-
rate risk stratification for MACE, allowing 60% of patients to
be assigned for stress-only imaging due to their very low risk
for MACE, with an annual risk of 1.4%, compared to the
visual risk assessment that resulted in 2.1%MACE risk while
selecting a similar proportion of patients [45]. Furthermore, in
PET imaging, prediction of adverse cardiovascular events has
recently been studied through the implementation of transfer
learning, which allows for data economization while boosting
image recognition capabilities and broadening the horizon of
network architectures that can be constructed. This was ex-
plored in a study evaluating only quantitative PET myocardial
perfusion polar maps for the prediction of adverse cardiovas-
cular events at 2 years of follow-up [27]. Notably, the discrim-
inatory capacity of the tailored network (AUC = 0.90 [0.88,
0.92]) even surpassed that of the linear integration of regional
myocardial blood flow estimates, clinical and functional var-
iables (see Fig. 3). Of note, the term prediction has been loose-
ly utilized in reports employing binary classification analytics
with little weighting of the influence of time in prognostic
modelling. As such, current evidence has only demonstrated
the retrospective discrimination capabilities of ML algorithms
in the identification of patients with a documented adverse
event. At this point, it is still unknown whether prospective
prediction or prognostic estimations can further outperform
existing models and whether clinical actions informed by
AI’s prognostic estimates can impact clinical outcomes.

Notably, there is a paucity of data regarding AI implemen-
tation in many applications of cardiac nuclear imaging, such
as evaluation of endocarditis and infiltrative diseases (amy-
loidosis and sarcoidosis). This is due to a lack of organized
big multicentre datasets suitable for ML analysis. However,
such organizational necessities are being addressed and will
offer the opportunity to expand the use of AI in these areas. An
interesting yet preliminary implementation of AI in this regard
will be the cross-generation of cardiac images for advanced
alternative imaging (e.g., “pseudo” PET images from MRI
data), as documented by Emami et al. [46]. This may offer
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AI-based diagnosis and prognosis

Diagnostic approach to suspected CAD
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Fig. 3 Potential roles of AI in cardiac imaging. Depiction of an
exemplary PET/CT case. Male with non-significant atherosclerosis in
the left circumflex and overall preserved perfusion reserve in which
DL-based processing of PET myocardial blood flow polar maps
automatically suggested low-risk of events at a 1–2 years horizon.
Transparency on the workflows represents AI implementations that

were not used in this particular example, namely automatic calcium
score quantification, CTA (FFR) analysis, and ICA analysis. AI,
artificial intelligence; Ca, calcium; CAD, coronary artery disease; CTA,
computed tomography angiography; ICA, invasive coronary
angiography; MACE, major adverse cardiovascular events; PET,
positron emission tomography
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the opportunity to elucidate whether constitutional MRI data
may contain complex dependencies that can translate into, for
instance, inflammatory PET findings of practical diagnostic
use, but this needs to be evaluated in clinical trials. A partic-
ular challenge in any such image generation-based approach is
the way the pathological regions will be handled between the
different modalities.

In summary, the incorporation of AI in cardiovascular nu-
clear imaging with SPECT/CT and PET/CT has allowed for
refinement in automatic detection and segmentation of raw
images. Such exploratory implementations are yet to expand
into more complex image analysis such as cardiac FDG-PET
images in inflammatory and infiltrative diseases. AI ap-
proaches will likely benefit from the integration of multiple
clinical, biological, and imaging data to refine the perfor-
mance of FDG-PET images for the assessment of the diagnos-
tic and risk stratification of patients.

AI in cardiovascular CT

In cardiovascular CT, AI can be used to identify the presence
of disease, to analyse vessels or chambers, and to combine
different types of imaging and clinical data to improve diag-
nosis or prognosis.

Identification of coronary artery calcification (CAC) on
non-contrast CT can identify patients with previously un-
known CAD. ML can be used to identify and quantify coro-
nary artery calcification [47]. DL has been used to identify
CAC on electrocardiogram-gated cardiac CT [48] as well on
non-gated CT acquisitions including the heart for other, i.e.,
non-cardiac indications [49, 50]. van Velzen et al. used DL to
identify and quantify calcium on CT using 7240 participants,
which included ECG-gated CT, diagnostic CT of the chest,
PET attenuation correction CT, radiotherapy planning CT,
and low-dose screening CT for lung cancer [51]. The resulting
model had an intraclass correlation coefficient of 0.85–0.99
for the identification of CAC, leading to the prospect of rou-
tine automated quantification of calcification on thoracic CT.
More recently, a study using 20,084 gated and non-gated car-
diac CT scans developed a deep learning model to identify
coronary calcification with excellent correlation with manual
readers (r 0.92, p < 0.001) and test-retest stability (intra-class
correlation 0.993, p < 0.001) [52].

In addition to CAC, other features of cardiovascular dis-
ease can also be identified using ML/DL on non-contrast im-
aging, including the presence of previous myocardial infarc-
tion [53], cardiac chamber dimensions [54] or pathologies,
and calcification in other vascular beds [50]. Inflammation
in the pericoronary adipose tissue can identify patients at in-
creased risk of subsequent cardiac events [55]. DLmodels can
identify and quantify epicardial and thoracic adipose tissue on
non-contrast CT [56–58], and this has been shown to better

predict major adverse cardiovascular events (MACE) com-
pared to traditional risk factors [59, 60].

Assessment of the coronary arteries is a key element of
contrast-enhanced CCTA. Qualitative visual descriptors of
stenosis and morphology are limited by observer variability
and only describe a portion of the potentially available infor-
mation present on the images [61]. In order to automatically
and quantitatively extract more information, most approaches
first require the segmentation of the coronary arteries.
Alternatively, ML can be used to identify the coronary
centreline and vessel surface, which can then be used for au-
tomatic identification of coronary plaque burden [62, 63].
Other authors have used ML directly on imaging data to iden-
tify the presence of significant coronary artery disease [64]. A
variety of ML techniques have been used to identify calcified
and non-calcified plaque and the presence of obstructive CAD
on CCTA [65]. To date, these studies are small, and further
research is needed. DL has been used to automatically assess
coronary artery calcification on CCTA with good accuracy
compared to conventional calcium scoring [48].

Alternatively, the identification of CCTA without coronary
artery calcification can be used to help prioritize work lists, by
identifying scans that can be reviewed less urgently [66]. These
techniques can also be used to expand the capabilities of
CCTA, for example, to identify lesion-specific ischemia from
conventional anatomical images [53]. ML and computational
fluid dynamic approaches have been used to assess the hemo-
dynamic significance of coronary artery stenoses by providing
CT-fractional flow reserve (FFR) measurements [67–70]. In
addition, DL assessment of the left ventricle, without assessing
the coronary arteries, has been used to identify patients with
functionally significant coronary artery stenoses compared to
assessment with invasive fractional flow reserve [71].

Cardiac chamber segmentation on contrast-enhanced CT is
a relatively established ML/DL application, with a variety of
different techniques employed by different groups [72, 73]
Models with more specific tasks have been developed to assist
valve implantation [74], electrophysiology assessment of the
left atrium [75], and to aid transcatheter aortic valve implan-
tation (TAVI) [76, 77]. A DL model quantifying left atrial
volume on non-gated CT showed to be an independent pre-
dictor of the presence of atrial fibrillation [78]. Vascular as-
sessment is also possible using similar ML/DL techniques.
This includes using DL to segment and measure the thoracic
aorta [79] on contrast or non-contrast CT and to identify the
presence or risk of acute aortic syndromes [80].

Identification and assessment of radiomic features can be
used to expand the analysis of CT beyond what is capable
using the naked eye [81]. Radiomic information can expand
the capabilities of CCTA by identifying specific imaging
markers of vulnerable plaques, such as intravascular ultra-
sound identified attenuation (AUC: 0.72, CI: 0.65–0.78), op-
tical coherence tomography identified thin cap fibroatheromas
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(AUC: 0.80, CI: 0.72–0.88) [82], or histological categories
(AUC: 0.73 CI: 0.63–0.84) [48]. Even more importantly,
radiomics and DLmay provide functionalities that significant-
ly increase the capabilities of CCTA, such as identifying PET
radionuclide uptake (AUC: 0.87, CI: 0.82–0.91) [82], or de-
riving calcium-scores from CCTA images automatically [51].
Radiomic analysis of the perivascular fat also holds valuable
information and can identify patients who suffer major ad-
verse cardiac events within 5 years of CCTA [83]. Radiomic
analysis may also have additive value in differentiating be-
tween aetiologies causing prosthetic valve obstruction [84].
In addition, radiomic analysis of the myocardium on non-
contrast CT can identify features of myocardial infarction
[53].

CT combined with clinical parameters

ML can also be used to assess a combination of clinical and
imaging features to improve prognostic assessment. Models
incorporating decision trees are particularly suited for this
analysis. Using the CONFIRM (Coronary CT Angiography
EvalulatioN For Clinical Outcomes: an InteRnational
Multicentre) registry, Motwani et al. showed that a ML-
model incorporating clinical and CCTA data outperformed
traditional risk scores and CT-derived parameters to predict
5-year all-cause mortality (AUC: 0.79) [84]. Further analysis
of this cohort has shown that clinical features and calcium
score can be combined in aMLmodel to predict the likelihood
of identifying obstructive disease on CCTA [85], and a ML
model incorporating high-risk plaque features further im-
proved the predictive ability [86]. In the MESA (Multi-
Ethnic Study of Atherosclerosis) study, a ML model incorpo-
rating clinical, biochemical, and imaging biomarkers was su-
perior to cardiovascular risk scores or calcium score alone
[87]. The EISNER (Early Identification of Subclinical
Atherosclerosis Using Non-Invasive Imaging Research)
trial demonstrated using a ML model including clinical
findings, coronary artery calcification, and epicardial ad-
ipose tissue quantification improved outcome prediction
compared to traditional risk scores [59, 88]. Models
incorporating explainable machine learning tools are
helping to understand the complex interactions of these
factors [86]. Future studies should incorporate additional
quantitative and qualitative imaging biomarkers in order
to optimize prognostic assessment from CT.

Challenges for artificial intelligence

As with any new technology, it is necessary to identify the
advantages of AI, and the associated improvements it may
help achieve in terms of image processing and analysis for

clinical applications. The field is in the early phase of devel-
opment (“hype” zone) and as such there is a clear need to
identify applications that will have an impact on clinical prac-
tice in the short and long term and move forward these indi-
cations through an extensive testing and evaluation process. In
terms of improving image quality, there is initial evidence that
AI-based algorithms do not represent generic solutions to im-
age reconstruction and image analysis tasks and should there-
fore be trained for specific applications across the different
modalities [89]. However, transfer learning and other ap-
proaches aiming to minimize the need for the representative
training data may alleviate these problems. We may also be
able to use transfer learning to gain insights from other do-
mains of imaging, such as oncology research. Larger training
datasets allow an increase in the variability of the data based
on which the AI learns, and should therefore impact the ro-
bustness of the results by reducing the probability of model
underfitting and/or overfitting [90]. Furthermore, sharing data
between institutions and research groups may allow large
steps towards generalization [28]. However, care must be tak-
en to ensure that combined datasets are robust and represen-
tative. Sample size calculations for ML analysis, and DL in
particular, can be challenging but the number of available
events should be considered in the generation of prediction
models [91].

In radiomic assessment, multiple factors may influence fea-
ture values, including random variations in scanner and pa-
tients, image acquisition and reconstruction settings, region of
interest segmentation, and image preprocessing [92]. Several
studies have proposed to either eliminate unstable features,
correct for influencing factors, or harmonize datasets in order
to improve the robustness of radiomics [90]. Respiratory
motion-induced spatial mismatch between the emission data
from PET and the attenuation data estimated from CT can
cause moderate to severe artifacts in cardiovascular imaging
studies, and severely influence the data quality. Motion cor-
rection is warranted to reduce this confounder. Recently pub-
lished guidelines and checklists aim to improve the quality of
future radiomic based AI studies, and transparency has been
recognized as the most important factor for reproducibility
[90].

Another area of future development concerns the use of
explainable AI. This aims to produce models which are less
opaque and more understandable for human users. Allowing
insight into the decision making process of ML/DL models
will facilitate their acceptability by both medical experts and
patients. Better understanding of how these models work can
help to ensure that they behave appropriately. Furthermore,
we can potentially understand more about disease processes
by learning how successful ML/DL models work in these
areas. One method to do this is to use models which are in-
herently more understandable and can be interrogated during
and after training. Another method is to produce secondary
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images which combine the underlying radiological image
with information from the ML model. These “saliency maps”
highlight areas or features in the radiological image which are
being used by the ML model. Saliency refers to unique fea-
tures (pixels, resolution, etc.) of the image in the context of
visual processing, and saliency maps are a topographical rep-
resentation of them [45, 60, 93]. This can aid in the under-
standing of which aspects of an image are being used by the
machine learning model. However, care must be taken with
their application as currently available methods do have po-
tential limitations [22].

Ideally, AI algorithms would need to constantly learn and
adapt to changes in specific populations or hospital-specific
population and scanner hardware and software, allowing for
continuous optimization of AI applications [94]. However, the
constant evolution and improvement of ML algorithms can
challenge existing regulation and approval systems, and new
methods for this are being developed. The large discrepancy
between the speed of development of AI implementations and
that of adequate regulation for safe deployment represents the
most important challenge to consider. Ethical codes of con-
duct have now been established for the development and use
of ML in medical imaging and should be adhered to [95].

Integration in clinical routine

In nuclear cardiology and cardiac CT, AI is trying to find a
prominent role in clinical routine beyond the initial steps that
have been taken towards automated image processing and
analysis. In the currently published data, development and
validation of ML in several applications have been demon-
strated, including image segmentation [39], measurement of
coronary artery calcium scores [48, 50], grading of coronary
stenosis on CT angiography [40, 41, 44, 67, 96, 97], and
identification of perfusion defects on nuclear imaging scans
[40, 41, 44]. Furthermore, ML models based on the integra-
tion of clinical and imaging variables have been shown to
provide a rapid and precise computation of post-imaging dis-
ease or outcome probability [37, 44, 45, 84, 98]. Figure 3
exemplifies such advancing implementations.

However, limited data exist on the actual effects on patient
outcomes and costs, and therefore randomized clinical trials
are warranted [99]. Prospective validation in representative
cohorts and controlled trials are needed to demonstrate the
accuracy and efficacy of AI. Efforts are ongoing to collect
large databases, including electronic medical records, nuclear
or CT imaging datasets, and outcome data for training and
validation of AI [35]. Standardization of clinical data record-
ing and imaging protocols as well as efficient dissemination of
data will be essential before data from different centers can be
used as input by AI.

Although AI offers opportunities to reduce costs, save
time, and improve clinical decision making, several practical
and ethical aspects have been described that need to be con-
sidered in order to integrate AI into the clinical routine [100].
One is the error rate deemed acceptable for an algorithm.
Neither man nor machine could be 100% accurate regarding
patient risk assessment, but there is an understandable low
tolerance for machine errors. Measures to promote the appli-
cation of AI in clinical practice include appropriate legislation
and regulations on the use of AI; transparency in assessment
of relevant performance components of AI (with separation of
data, performance, and algorithmic transparency and recogni-
tion of the uncertainty that can be attributed to an algorithm’s
output); robust information technology (IT) governance to
handle large amount of data; and training and educational
programs on how to appropriately assess and use AI products.
The training curricula should promote multidisciplinary col-
laboration between AI developers, implementers, and clinical
practitioners in all relevant fields. In order to promote research
on AI, guidelines on how to best construct and apply AI
models as well as objectively evaluate their results should be
considered.

Future perspectives

Specific requirements and quality control processes are need-
ed for the development of deep learning-based solutions in
medical imaging. Most important to address are concerns re-
garding the datasets used, the robustness and reproducibility
of the proposed solutions, their interpretability, and clinical
implementation/acceptability.

Data sets and harmonization

Large volumes of data are required to test and train ML algo-
rithms, particularly when DL networks are applied on imaging
data. High-quality images that are representative of clinical
practice are required, and the ground truth should always be
based on solid endpoints. Automated annotation, data aug-
mentation, and synthesis can be used to enhance limited
datasets but must be used with caution. For testing validation
and training, datasets can be split or other methods can be
applied, such as k-fold cross-validation [101]. Furthermore,
external validation on datasets from separate sites should be
performed, to assess expected accuracy of deployed AI in
other medical centers. The possibility of using AI for har-
monization and standardization of multi-centre imaging
studies is gathering momentum and could facilitate the
usage of heterogeneous datasets for the training of DL-
based algorithms.
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Automation

From data acquisition to disease classification, there are dif-
ferent intervening steps involved (image reconstruction, im-
age segmentation, extraction of imaging biomarkers, image
classification, patient stratification) [28]. At the moment,
DL-based methods have mostly been developed and tested
for each of these individual steps of using medical imaging
in clinical practice. One could expect in the future that AI-
based algorithms could automatically handle all of these steps
in a transparent fashion to the user. Acquired data can be
automatically reconstructed using new AI-based algorithms,
and it is possible that attenuation correction will be performed
using pre-existing CT or MRI data from previous examina-
tions or even completely without the help of morphological
image data. Furthermore, it is expected that the segmentation
and re-angulation of image data will run automatically. It is
also to be expected that, with the help of prognostic models
previously developed on large patient groups, a certain risk
assessment will be evaluated, e.g., for the presence of a flow
limiting coronary artery disease or for the occurrence of
MACE. Finally, the incorporation of AI into this envisioned
automated workflow (from aquisition and pre-processing to
disease and risk identification) is useful for complex cases that
will benefit the most from expert clinical analysis in situations
of massive data overflow.

Clinical implementation

With regard to implementation in clinical routine, a certain
change in the activities of the medical imaging specialist can
be expected. As a first step, tedious and time-consuming work
such as data analysis will be performed automatically, and the

imaging physician will receive an initial assessment by the
system. Deep learning promises to better integrate medical
data sources, address the heterogeneity in patient disease
types, bridge the gap between omics research and bedside
phenotypes, and ultimately enable personalized medicine.
Educational programs should be implemented, given the al-
ready ubiquitous presence of AI. In medical education, the
implementation of a broad AI curriculum is likely to enrich
understanding of many conditions in cardiovascular medicine
with heterogeneous aetiologies and/or phenotypes. AI also has
the potential to utilize data sources to predict the presence of
diseases from sources which we currently do not consider as
relevant information, such as facial photos [102]. More AI
application is needed for the growing field in cardiovascular
infection, inflammation, as described recently in the procedur-
al recommendations of cardiac PET/CT imaging [103]. The
use of AI to optimize cardiac PET/MRI is being developed in
this relatively new imaging modality [104]. In particular, the
use of DL to create pseudo-CT images to improve PET/MRI
attenuation correction is under active development [104, 105].
An important challenge for PET/MRI is that MRI sequences
for attenuation correction do not provide a complete linear
scale, as is available for PET/CT attenuation correction. The
use of DL to transform MR and/or PET images into pseudo-
CT images that could be used for attenuation correction would
therefore improve the accuracy of PET/MRI [104].

Ethical issues

There are a number of ethical issues which should be
considered at all stages of development and use of AI
for medical imaging. Firstly, the data used to train the
AI models should be used with adherence to local and

Table 1 Key elements for the future: advantages, challenges, and solutions of AI in cardiovascular hybrid nuclear medicine and CT imaging

Advantages Challenges Solutions

Precision-, accuracy-, and data-driven
decisions for optimal diagnosis and
monitoring treatment

Complexity and costs Improvements in hardware and software

Improve inter-/intra-observer reproducibility “Black box”: limited/lack of interpretability Development of user-friendly software
solutions to facilitate AI research among
clinicians

Time-saving Privacy, security, and ethical issues Creating local, national, and international
ethical guidelines

Second reader assistance Regulation, legal, and liability issues Creation of multi-national available medical
data registries

Integration of large and diverse data Integration of expert and machine decision making Providing developed AI algorithms as open
source and multicentre collaborations

Changes in job descriptions Life-long learning

Availability of large and diverse data sets and limited
data in inflammatory and infectious cardiovascular
diseases

Creation of multi-national available diverse
data sets, including clinical data
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national policies which consider aspects such as informed
consent, privacy, data protection, and data ownership. The
use of patient information without informed consent may
be possible if certain criteria are met, such as the lawful
basis under General Data Protection Regulation, EU
2016/679 (GDPR) or national regulations. However, it is
important that patient privacy is maintained, and robust
de-identification and anonymization of medical images
are required. This includes both imaging meta-data and
potentially identifiable features in the images themselves.
Efforts should also be made to ensure the data is repre-
sentative in order to avoid the impact of selection and
other biases on the AI algori thm and to ensure
generalisability. Secondly, transparency in how the AI
algorithm is trained and functions is required, and “black
box” algorithms should be discouraged. Thirdly, for clin-
ical applications, the accuracy and safety of the AI algo-
rithms should continue to be monitored, and interpretation
by a trained clinician will remain important. Legal and
liability issues will vary between countries. There are also
potential threats from malicious attacks both during train-
ing and use of AI algorithms, and therefore attention to
cyber security vulnerabilities is important. Ethical codes
for AI research and the use of AI in clinical practice have
been established [95], and it is also important that AI
research adheres to suitable reporting standards [106].

In conclusion, the application of AI in the cardiovascular
field is bringing new possibilities in early detection and diag-
nosis of CVD, better clinical decisions, outcome prediction, or
prognosis evaluation. The finding of the appropriate balance
between fully autonomous AI and physician supervision is a
new and major challenge. If AI algorithms are at least as
accurate and reproducible as assessment by physicians in a
dedicated task, it may help in the daily practice by improving
patient management. On the other hand, the medical commu-
nity is not ready, nor should it be, to follow blindly “black
box” algorithms, and several key elements for future applica-
tion of AI in cardiovascular imaging need to be clarified
(Table 1). Further discussion of the ethical and legal issues
are required before AI shapes the medical practice of the fu-
ture. Explaining the features behind AI prediction will be cen-
tral for the physician’s ability to interact and use AI-based
systems.Within this context, the development and application
of AI-algorithms will be very much welcomed. Finally, guide-
lines must be developed to standardize broad applications of
AI in medicine.
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