CBS 2019
CBSMD教育中心
English

分叉支架

科研文章

荐读文献

Effect of low-density lipoprotein cholesterol on the geometry of coronary bifurcation lesions and clinical outcomes of coronary interventions in the J-REVERSE registry Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: the Nordic bifurcation study Multicentre, randomized comparison of two-stent and provisional stenting techniques in patients with complex coronary bifurcation lesions: the DEFINITION II trial Impact of stent deformity induced by the kissing balloon technique for bifurcating lesions on in-stent restenosis after coronary intervention The European bifurcation club Left Main Coronary Stent study: a randomized comparison of stepwise provisional vs. systematic dual stenting strategies (EBC MAIN) Treating Bifurcation Lesions: The Result Overcomes the Technique Evolution of the Crush Technique for Bifurcation Stenting Systematic Review and Network Meta‐Analysis Comparing Bifurcation Techniques for Percutaneous Coronary Intervention 3-Year Outcomes After 2-Stent With Provisional Stenting for Complex Bifurcation Lesions Defined by DEFINITION Criteria Definitions and classifications of bifurcation lesions and treatment

Original Research2018 Oct;33(4):360-371.

JOURNAL:Cardiovasc Interv Ther. Article Link

Effect of low-density lipoprotein cholesterol on the geometry of coronary bifurcation lesions and clinical outcomes of coronary interventions in the J-REVERSE registry

Murasato Y, Kinoshita Y, J-REVERSE investigators et al. Keywords: Bifurcation angle; Coronary bifurcation lesion; Intravascular ultrasound; Low-density lipoprotein cholesterol

ABSTRACT

 

We investigated the effect of low-density lipoprotein cholesterol (LDL-C) on the geometry of coronary bifurcationlesions. A total of 300 non-left main bifurcation lesions in 298 patients from J-REVERSE registry were classified according to statin treatment status at admission (NT, non-treated; ST, statin-treated) and were further subdivided based on LDL-C levels with a cutoff of 100 mg/dL (NT-high, n = 76 lesions; NT-low, n = 46; ST-high, n = 99 and ST-low, n = 79). In addition, a group with strict control of LDL-C (< 70 mg/dL) was defined (ST-SC; n = 19). The NT-high group had higher angled bifurcations compared to that in the NT-low group (59.1° ± 21.5° vs. 50.3° ± 18.6°, p = 0.02). In the multivariate analysis, NT-high group was an independent factor contributing on generation of higher angled (> 80°) lesion (odds ratio 3.77, 95% CI 1.05-13.5, p = 0.04). The NT-low group had more men (95.6 vs. 81.6%, p = 0.03), and greater plaque volume in the distal main vessel (7.1 ± 3.2 mm3/mm vs. 5.7 ± 2.7 mm3/mm, p = 0.02), compared to those in the NT-high group. LDL-C was more likely to remain high after statin treatment in younger patients (65.3 ± 3.6 years vs. 68.6 ± 8.4 years, p = 0.02) and current smokers (36.7 vs. 16.9%, p = 0.004). The ST-SC group had limited luminal volume expansion compared to that in the ST-high group (proximal: 6.7 ± 1.4 mm3/mm vs. 7.7 ± 2.3 mm3/mm, p = 0.04; distal: 5.3 ± 1.5 mm3/mm vs. 6.5 ± 1.9 mm3/mm, p = 0.04), regardless of similar plaque volumes. Elevated LDL-C is likely to promote the generation of higher angled bifurcation lesions and multiple risk factors lead to a more progressed bifurcation lesion even in patients with lower LDL-C levels.