CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

Myofibroblast Phenotype and Reversibility of Fibrosis in Patients With End-Stage Heart Failure A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure Rationale and design of the comParIson Of sacubitril/valsartaN versus Enalapril on Effect on nt-pRo-bnp in patients stabilized from an acute Heart Failure episode (PIONEER-HF) trial Rationale and design of the GUIDE-IT study: Guiding Evidence Based Therapy Using Biomarker Intensified Treatment in Heart Failure Association Between Functional Impairment and Medication Burden in Adults with Heart Failure Frequency, predictors, and prognosis of ejection fraction improvement in heart failure: an echocardiogram-based registry study Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction Is Cardiac Diastolic Dysfunction a Part of Post-Menopausal Syndrome? Baseline Features of the VICTORIA (Vericiguat Global Study in Subjects With Heart Failure With Reduced Ejection Fraction) Trial The year in cardiology: heart failure: The year in cardiology 2019

Review Article2020 Sep 21;S0033-0620(20)30158-4.

JOURNAL:Prog Cardiovasc Dis. Article Link

Mechanical circulatory support devices in advanced heart failure: 2020 and beyond

JL Vieira, HO Ventura, MR Mehra et al. Keywords: advanced heart failure; cardiogenic shock; hemocompatibility; INTERMACS; LVAD; left ventricular assist device; mechanical circulatory support

ABSTRACT

Substantial progress in the field of mechanical circulatory support (MCS) has expanded the treatment options for patients with advanced-stage heart failure (HF). Currently available MCS devices can be implanted percutaneously or surgically. They can also be configured to support the left, right, or both ventricles, offering varying levels of circulatory support. Short-term temporary MCS devices are primarily used in high-risk percutaneous coronary intervention, cardiogenic shock, and post-cardiac arrest, while durable left ventricular assist systems (LVAS) are increasingly utilized either as a bridge-to-transplant, bridge to decision, or as a destination therapy. The evolution from older pulsatile devices to continuous-flow LVAS and the incorporation of smaller pumps, with no valves, fewer moving parts, and improved hemocompatibility has translated into improved clinical outcomes, greater durability, fewer adverse events, and reduced overall cost of care. However, despite marked advances in device design and clinical management, determining MCS candidacy is often difficult and requires the integration of clinical, biomarker, imaging, exercise, and hemodynamic data. This review aims to provide a summary of the current use of short-term and durable MCS devices in the treatment of advanced-stage HF, highlighting several aspects of LVAS support and the challenges that remain.