CBS 2019
CBSMD教育中心
English

肺动脉高压

科研文章

荐读文献

Prognostic Effect and Longitudinal Hemodynamic Assessment of Borderline Pulmonary Hypertension Skeletal muscle mitochondrial oxidative phosphorylation function in idiopathic pulmonary arterial hypertension: in vivo and in vitro study 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT) Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study The association between body mass index and obesity with survival in pulmonary arterial hypertension Impact of age and comorbidity on risk stratification in idiopathic pulmonary arterial hypertension Clinical and genetic characteristics of pulmonary arterial hypertension in Lebanon Right ventricular stroke work correlates with outcomes in pediatric pulmonary arterial hypertension Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial 中国肺高血压诊断和治疗指南2018

Original Research2019 May 7. pii: EIJ-D-18-01082.

JOURNAL:EuroIntervention. Article Link

Pulmonary Artery Denervation Using Catheter based Ultrasonic Energy

Rothman A, Jonas M, Castel D et al. Keywords: pulmonary artery denervation; pulmonary hypertension

ABSTRACT

AIMS -  Pulmonary arterial hypertension is a devastating disease characterized by pulmonary vascular remodelling and right heart failure. Radio-frequency pulmonary artery denervation (PDN) improves pulmonary hemodynamics in pre-clinical and early clinical studies, however denervation depth is limited. High-frequency non-focused ultrasound can deliver energy to the vessel adventitia, sparing the intima and media. We therefore investigated the feasibility, safety and efficacy of ultrasound PDN.

 

METHODS AND RESULTS -  Histological examination demonstrated that innervation of human pulmonary arteries are predominantly sympathetic (71%), with >40% of nerves at a depth of >4mm. Finite element analysis of ultrasound energy distribution and ex-vivo studies demonstrated generation of temperatures >47ºC to a depth of 10mm. In domestic swine PDN reduced mean pulmonary artery pressure induced by thromboxane A2 in comparison to sham. No adverse events were observed to 95-days. Histological examination identified structural and immunohistological alterations of nerves in PDN treated animals, with sparing of the intima and media and reduced tyrosine hydroxylase staining 95-days post-procedure indicating persistent alteration of the structure of sympathetic nerves.

 

CONCLUSIONS -  Ultrasound PDN is safe and effective in the pre-clinical setting, with energy delivery to a depth that will permit targeting sympathetic nerves in humans.