CBS 2019
CBSMD教育中心
English

剪应力

科研文章

荐读文献

Role of Low Endothelial Shear Stress and Plaque Characteristics in the Prediction of Nonculprit Major Adverse Cardiac Events: The PROSPECT Study Coronary Microcirculation in Ischemic Heart Disease Angiographic derived endothelial shear stress: a new predictor of atherosclerotic disease progression Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future: A Serial Optical Coherence Tomography and Computational Fluid Dynamics Study Local Low Shear Stress and Endothelial Dysfunction in Patients With Nonobstructive Coronary Atherosclerosis Evolving understanding of the heterogeneous natural history of individual coronary artery plaques and the role of local endothelial shear stress Flow-Regulated Endothelial S1P Receptor-1 Signaling Sustains Vascular Development Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study Low shear stress induces endothelial reactive oxygen species via the AT1R/eNOS/NO pathway
|<< 1 2 >>|

Review Article2017 Nov;32(6):748-754.

JOURNAL:Curr Opin Cardiol. Article Link

Evolving understanding of the heterogeneous natural history of individual coronary artery plaques and the role of local endothelial shear stress

Antoniadis AP, Stone PH. Keywords: coronary artery plaques; local endothelial shear stress

ABSTRACT


PURPOSE OF REVIEWAnatomic and morphologic features of high-risk coronary plaque have been identified by novel imaging modalities, but it has been less clear which ostensibly high-risk plaques will actually destabilize and cause a new cardiac event. Different plaques with different morphologies coexist within the same artery, but the impact of this heterogeneity on the natural history of coronary artery disease has not been extensively investigated.


RECENT FINDINGS - Coronary plaques exhibit remarkable heterogeneity of local morphological and blood-flow patterns, including endothelial shear stress (ESS), along their longitudinal axis, with important implications for the heterogeneous natural history of coronary disease. The natural history of individual plaques is considerably divergent, with most plaques, even ostensibly high-risk plaques, becoming quiescent and only a minority progressing to destabilize and precipitate a new clinical event. Local areas of proinflammatory low ESS appear to be an important condition for plaque destabilization.

SUMMARY - Characterization of an individual atherosclerotic plaque based on a snapshot of morphological features at a specific location, such as the minimal lumen diameter, may not be sufficiently comprehensive to accurately reflect the risk associated with that plaque. A detailed assessment of both anatomical and functional pathobiologic characteristics in the longitudinal plaque dimension may enhance our understanding of atherosclerosis progression and improve the management of individual patients with coronary artery disease.