CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Cardiac Structural Changes After Transcatheter Aortic Valve Replacement: Systematic Review and Meta-Analysis of Cardiovascular Magnetic Resonance Studies Expert Recommendations on Cardiac Computed Tomography for Planning Transcatheter Left Atrial Appendage Occlusion Discrepancies in Measurement of the Thoracic Aorta: JACC Review Topic of the Week 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines From organic and inorganic phosphates to valvular and vascular calcifications Transcatheter Aortic Valve Replacement During Pregnancy Feasibility of Coronary Access and Aortic Valve Reintervention in Low-Risk TAVR Patients Cardiovascular Magnetic Resonance as a complementary method to Transthoracic Echocardiography for Aortic Valve Area Estimation in patients with Aortic Stenosis: A systematic review and meta-analysis Suture- or Plug-Based Large-Bore Arteriotomy Closure: A Pilot Randomized Controlled Trial Considerations for Optimal Device Selection in Transcatheter Aortic Valve Replacement: A Review

Clinical Trial2014 May 8;370(19):1790-8.

JOURNAL:N Engl J Med. Article Link

Transcatheter aortic-valve replacement with a self-expanding prosthesis

Adams DH, Popma JJ, U.S. CoreValve Clinical Investigators. Keywords: self-expanding transcatheter aortic-valve bioprothesis; SAVR; severe aortic stenosis; 1-year outcome

ABSTACT


BACKGROUND - We compared transcatheter aortic-valve replacement (TAVR), using a self-expanding transcatheter aortic-valve bioprosthesis, with surgical aortic-valve replacement in patients with severe aortic stenosis and an increased risk of death during surgery.

 

METHODS - We recruited patients with severe aortic stenosis who were at increased surgical risk as determined by the heart team at each study center. Risk assessment included the Society of Thoracic Surgeons Predictor Risk of Mortality estimate and consideration of other key risk factors. Eligible patients were randomly assigned in a 1:1 ratio to TAVR with the self-expanding transcatheter valve (TAVR group) or to surgical aortic-valve replacement (surgical group). The primary end point was the rate of death from any cause at 1 year, evaluated with the use of both noninferiority and superiority testing.

 

RESULTS - A total of 795 patients underwent randomization at 45 centers in the United States. In the as-treated analysis, the rate of death from any cause at 1 year was significantly lower in the TAVR group than in the surgical group (14.2% vs. 19.1%), with an absolute reduction in risk of 4.9 percentage points (upper boundary of the 95% confidence interval, 0.4; P<0.001 for noninferiority; P = 0.04 for superiority). The results were similar in the intention-to-treat analysis. In a hierarchical testing procedure, TAVR was noninferior with respect to echocardiographic indexes of valve stenosis, functional status, and quality of life. Exploratory analyses suggested a reduction in the rate of major adverse cardiovascular and cerebrovascular events and no increase in the risk of stroke.

 

CONCLUSIONS - In patients with severe aortic stenosis who are at increased surgical risk, TAVR with a self-expanding transcatheter aortic-valve bioprosthesis was associated with a significantly higher rate of survival at 1 year than surgical aortic-valve replacement. (Funded by Medtronic; U.S. CoreValve High Risk Study ClinicalTrials.gov number, NCT01240902.)