CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Rationale and design of a randomized clinical trial comparing safety and efficacy of Myval transcatheter heart valve versus contemporary transcatheter heart valves in patients with severe symptomatic aortic valve stenosis: the LANDMARK trial Randomized Evaluation of TriGuard 3 Cerebral Embolic Protection After Transcatheter Aortic Valve Replacement: REFLECT II Decline in Left Ventricular Ejection Fraction During Follow-Up in Patients With Severe Aortic Stenosis Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Replacement 5-Year Outcomes After TAVR With Balloon-Expandable Versus Self-Expanding Valves: Results From the CHOICE Randomized Clinical Trial Comparison of Early Surgical or Transcatheter Aortic Valve Replacement Versus Conservative Management in Low-Flow, Low-Gradient Aortic Stenosis Using Inverse Probability of Treatment Weighting: Results From the TOPAS Prospective Observational Cohort Study 2020 ACC Expert Consensus Decision Pathway on Management of Conduction Disturbances in Patients Undergoing Transcatheter Aortic Valve Replacement A Report of the American College of Cardiology Solution Set Oversight Committee Short Length of Stay After Elective Transfemoral Transcatheter Aortic Valve Replacement Is Not Associated With Increased Early or Late Readmission Risk Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress-Induced, Piezo-1-Mediated Monocyte Activation Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients

Clinical Trial2014 May 8;370(19):1790-8.

JOURNAL:N Engl J Med. Article Link

Transcatheter aortic-valve replacement with a self-expanding prosthesis

Adams DH, Popma JJ, U.S. CoreValve Clinical Investigators. Keywords: self-expanding transcatheter aortic-valve bioprothesis; SAVR; severe aortic stenosis; 1-year outcome

ABSTACT


BACKGROUND - We compared transcatheter aortic-valve replacement (TAVR), using a self-expanding transcatheter aortic-valve bioprosthesis, with surgical aortic-valve replacement in patients with severe aortic stenosis and an increased risk of death during surgery.

 

METHODS - We recruited patients with severe aortic stenosis who were at increased surgical risk as determined by the heart team at each study center. Risk assessment included the Society of Thoracic Surgeons Predictor Risk of Mortality estimate and consideration of other key risk factors. Eligible patients were randomly assigned in a 1:1 ratio to TAVR with the self-expanding transcatheter valve (TAVR group) or to surgical aortic-valve replacement (surgical group). The primary end point was the rate of death from any cause at 1 year, evaluated with the use of both noninferiority and superiority testing.

 

RESULTS - A total of 795 patients underwent randomization at 45 centers in the United States. In the as-treated analysis, the rate of death from any cause at 1 year was significantly lower in the TAVR group than in the surgical group (14.2% vs. 19.1%), with an absolute reduction in risk of 4.9 percentage points (upper boundary of the 95% confidence interval, 0.4; P<0.001 for noninferiority; P = 0.04 for superiority). The results were similar in the intention-to-treat analysis. In a hierarchical testing procedure, TAVR was noninferior with respect to echocardiographic indexes of valve stenosis, functional status, and quality of life. Exploratory analyses suggested a reduction in the rate of major adverse cardiovascular and cerebrovascular events and no increase in the risk of stroke.

 

CONCLUSIONS - In patients with severe aortic stenosis who are at increased surgical risk, TAVR with a self-expanding transcatheter aortic-valve bioprosthesis was associated with a significantly higher rate of survival at 1 year than surgical aortic-valve replacement. (Funded by Medtronic; U.S. CoreValve High Risk Study ClinicalTrials.gov number, NCT01240902.)