CBS 2019
CBSMD教育中心
中 文

Optical Coherence Tomography

Abstract

Recommended Article

Spontaneous Coronary Artery Dissection: Pathophysiological Insights From Optical Coherence Tomography Optimal threshold of postintervention minimum stent area to predict in-stent restenosis in small coronary arteries: An optical coherence tomography analysis Vascular response and healing profile of everolimus-eluting bioresorbable vascular scaffolds for percutaneous treatment of chronic total coronary occlusions: A one-year optical coherence tomography analysis from the GHOST-CTO registry Clinical Predictors for Lack of Favorable Vascular Response to Statin Therapy in Patients With Coronary Artery Disease: A Serial Optical Coherence Tomography Study Optical Coherence Tomography Guided Percutaneous Coronary Intervention With Nobori Stent Implantation in Patients With Non-ST-Segment-Elevation Myocardial Infarction (OCTACS) Trial: Difference in Strut Coverage and Dynamic Malapposition Patterns at 6 Months Optical Coherence Tomography to Optimize Results of Percutaneous Coronary Intervention in Patients with Non-ST-Elevation Acute Coronary Syndrome: Results of the Multicenter, Randomized DOCTORS Study (Does Optical Coherence Tomography Optimize Results of Stenting) Fate of post-procedural malapposition of everolimus-eluting polymeric bioresorbable scaffold and everolimus-eluting cobalt chromium metallic stent in human coronary arteries: sequential assessment with optical coherence tomography in ABSORB Japan trial Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study

Review Article2018 May 21;20(7):33.

JOURNAL:Curr Atheroscler Rep. Article Link

A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography

Boi A, Jamthikar AD, Suri JS et al. Keywords: Atherosclerosis; Cardiovascular disease; Coronary; Machine learning and deep learning; Optical coherence tomography; Plaque characterization; Risk stratification

ABSTRACT


PURPOSE OF REVIEW - Atherosclerotic plaque deposition within the coronary vessel wall leads to arterial stenosis and severe catastrophic events over time. Identification of these atherosclerotic plaque components is essential to pre-estimate the risk of cardiovascular disease (CVD) and stratify them as a high or low risk. The characterization and quantification of coronary plaque components are not only vital but also a challenging task which can be possible using high-resolution imaging techniques.


RECENT FINDING - Atherosclerotic plaque components such as thin cap fibroatheroma (TCFA), fibrous cap, macrophage infiltration, large necrotic core, and thrombus are the microstructural plaque components that can be detected with only high-resolution imaging modalities such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT). Light-based OCT provides better visualization of plaque tissue layers of coronary vessel walls as compared to IVUS. Three dominant paradigms have been identified to characterize atherosclerotic plaque components based on optical attenuation coefficients, machine learning algorithms, and deep learning techniques. This review (condensation of 126 papers after downloading 150 articles) presents a detailed comparison among various methodologies utilized for plaque tissue characterization, classification, and arterial measurements in OCT. Furthermore, this review presents the different ways to predict and stratify the risk associated with the CVD based on plaque characterization and measurements in OCT. Moreover, this review discovers three different paradigms for plaque characterization and their pros and cons. Among all of the techniques, a combination of machine learning and deep learning techniques is a best possible solution that provides improved OCT-based risk stratification.