CBS 2019
CBSMD教育中心
中 文

Optical Coherence Tomography

Abstract

Recommended Article

Histopathological validation of optical coherence tomography findings of the coronary arteries Coronary Optical Coherence Tomography and Cardiac Magnetic Resonance Imaging to Determine Underlying Causes of Myocardial Infarction With Nonobstructive Coronary Arteries in Women A new optical coherence tomography-based calcium scoring system to predict stent underexpansion Superficial Calcium Fracture After PCI as Assessed by OCT Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study Drug-eluting stent implantation in patients with acute coronary syndrome - the Activity of Platelets after Inhibition and Cardiovascular Events: Optical Coherence Tomography (APICE OCT) study Nonculprit Lesion Plaque Morphology in Patients With ST-Segment–Elevation Myocardial Infarction: Results From the COMPLETE Trial Optical Coherence Tomography Substudys Characteristics of stent thrombosis in bifurcation lesions analysed by optical coherence tomography

Original Research2018 Aug 2.[Epub ahead of print]

JOURNAL:Cardiovasc Interv Ther. Article Link

Impact of low tissue backscattering by optical coherence tomography on endothelial function after drug-eluting stent implantation

Tamaru H, Fujii K, Nakata T et al. Keywords: OCT; vascular healing; DES; endothelial function

ABSTRACT


This study evaluated the impact of optical coherence tomography (OCT)-derived low-backscattered tissue on mid-term coronary endothelial function after drug-eluting stent (DES) implantation. Although OCT enables detailed in vivo evaluation of neointimal tissue characterization after DES implantation, its association with physiological vascula rhealing response is unclear. Thirty-three stable angina pectoris patients underwent OCT examination and endothelial function testing with intracoronary infusion of incremental doses of acetylcholine 8-month after DES implantation in a single lesion of the left anterior descending artery. Neointimal tissue was classified into two patterns based on the predominant OCT light backscatter: high backscatter and low backscatter. Although the presence of uncovered or malapposed stent strut was not associated with the degree of vasoconstriction, the degree of vasoconstriction was significantly greater in the DES with low-backscattered neointima than in the DES without low-backscattered neointima (- 32.1 ± 25.7 vs. - 4.1 ± 20.1%, p = 0.003). Moreover, there was an inverse linear relationship between low backscatter tissue index and degree of vasoconstriction after acetylcholine infusion (r = 0.50 and p = 0.003). The endothelium-dependent vasomotor response after 8-month of DES was impaired in patients with low neointimal tissue backscatter on OCT imaging. OCT assessment of low-backscattered tissue may be used as surrogate markers for impairment of endothelial function after DES.