CBS 2019
CBSMD教育中心
中 文

Optical Coherence Tomography

Abstract

Recommended Article

Clinical Impact of OCT Findings During PCI: The CLI-OPCI II Study Neoatherosclerosis in Patients With Coronary Stent Thrombosis: Findings From Optical Coherence Tomography Imaging (A Report of the PRESTIGE Consortium) A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography Impact of low tissue backscattering by optical coherence tomography on endothelial function after drug-eluting stent implantation Device specificity of vascular healing following implantation of bioresorbable vascular scaffolds and bioabsorbable polymer metallic drug-eluting stents in human coronary arteries: the ESTROFA OCT BVS vs. BP-DES study Coronary Artery Intraplaque Microvessels by Optical Coherence Tomography Correlate With Vulnerable Plaque and Predict Clinical Outcomes in Patients With Ischemic Angina Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention Outcomes From the Pan-London PCI Cohort Optical Coherence Tomography Findings in Patients With Coronary Stent Thrombosis: A Report of the PRESTIGE Consortium (Prevention of Late Stent Thrombosis by an Interdisciplinary Global European Effort)

Original Research2018 Apr 6;13(18):e2182-e2189.

JOURNAL:EuroIntervention. Article Link

A new optical coherence tomography-based calcium scoring system to predict stent underexpansion

Fujino A, Mintz GS, Matsumura M et al. Keywords: calcified stenosis; OCT

ABSTRACT


AIMS - This was a retrospective study to develop and validate an optical coherence tomography (OCT)-based calcium scoring system to predict stent underexpansion.


METHODS AND RESULTS - A calcium score was developed using 128 patients with pre- and post-stent OCT (test cohort) and then validated in an external cohort of 133 patients. In the test cohort, a multivariable model showed that the independent predictors of stent expansion were maximum calcium angle per 180° (regression coefficient: -7.43; p<0.01), maximum calcium thickness per 0.5 mm (-3.40; p=0.02), and calcium length per 5 mm (-2.32; p=0.01). A calcium score was then defined as 2 points for maximum angle >180°, 1 point for maximum thickness >0.5 mm, and 1 point for length >5 mm. In the validation cohort, the lesions with calcium score of 0 to 3 had excellent stent expansion, whereas the lesions with a score of 4 had poor stent expansion (96% versus 78%, p<0.01). On multivariate analysis the calcium score was an independent predictor of stent underexpansion.

CONCLUSIONS - An OCT-based calcium scoring system can help to identify lesions that would benefit from plaque modification prior to stent implantation. Lesions with calcium deposit with maximum angle >180°, maximum thickness >0.5 mm, and length >5 mm may be at risk of stent underexpansion.