CBS 2019
CBSMD教育中心
中 文

Optical Coherence Tomography

Abstract

Recommended Article

Volumetric characterization of human coronary calcification by frequency-domain optical coherence tomography Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial Intracoronary Optical Coherence Tomography 2018: Current Status and Future Directions Intracoronary Optical Coherence Tomography-Derived Virtual Fractional Flow Reserve for the Assessment of Coronary Artery Disease Optical coherence tomography and C-reactive protein in risk stratification of acute coronary syndromes Optical coherence tomography predictors of target vessel myocardial infarction after provisional stenting in patients with coronary bifurcation disease Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study Comparison of Stent Expansion Guided by Optical Coherence Tomography Versus Intravascular Ultrasound: The ILUMIEN II Study (Observational Study of Optical Coherence Tomography [OCT] in Patients Undergoing Fractional Flow Reserve [FFR] and Percutaneous Coronary Intervention)

Clinical Trial2009 Jun;30(11):1348-55.

JOURNAL:Eur Heart J. Article Link

Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study

Tanaka A, Imanishi T, Kitabata H et al. Keywords: microcirculation; reperfusion; plaque; angioplasty; OCT

ABSTRACT

AIMSAlthough some recent guidelines recommend an early invasive strategy for non-ST-segment elevation acute coronary syndrome (NSTEACS), several studies have failed to identify any benefit for very early intervention for NSTEACS. The no-reflow phenomenon may inhibit the expected benefit from very early recanalization for NSTEACS subjects. The aim of this study was to investigate whether optical coherence tomography (OCT) could predict no-reflow in patients with NSTEACS.

METHODS AND RESULTS - This study comprised 83 consecutive patients with NSTEACS who underwent OCT and successful emergent primary stenting. On the basis of post-stent TIMI flow, patients were divided into two groups: no-reflow group (n = 14) and reflow group (n = 69). Thin-cap fibroatheroma (TCFA) was defined as a plaque presenting lipid content for >90 degrees , and with thinnest part of the fibrous cap measuring <70 microm. Thin-cap fibroatheroma were more frequently observed in the no-reflow group than in the reflow group (50% vs. 16%, P = 0.005). The frequency of the no-reflow phenomenon increases according to the size of the lipid arc in the culprit plaque. Final TIMI blush grade also deteriorated according to the increase in the lipid arc. A multivariable logistic regression model revealed that lipid arc alone was an independent predictor of no-reflow (odds ratio 1.018; CI 1.004-1.033; P = 0.01).

CONCLUSION - Optical coherence tomography can predict no-reflow after percutaneous coronary intervention (PCI) in NSTEACS. The lipid contents of a culprit plaque may play a key role in damage to the microcirculation after PCI for NSTEACS. From our results, it is found that OCT is useful tool for stratifying risk for PCI for NSTEACS.