CBS 2019
CBSMD教育中心
中 文

光学相关断层扫描

Abstract

Recommended Article

Randomized comparison of stent strut coverage following angiography- or optical coherence tomography-guided percutaneous coronary intervention Vascular response and healing profile of everolimus-eluting bioresorbable vascular scaffolds for percutaneous treatment of chronic total coronary occlusions: A one-year optical coherence tomography analysis from the GHOST-CTO registry Clinical Predictors for Lack of Favorable Vascular Response to Statin Therapy in Patients With Coronary Artery Disease: A Serial Optical Coherence Tomography Study Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography Assessment of the coronary calcification by optical coherence tomography Volumetric characterization of human coronary calcification by frequency-domain optical coherence tomography Covering our tracks – optical coherence tomography to assess vascular healing

Review Article2015 Jul;4(3):285-294.

JOURNAL:Interv Cardiol Clin. Article Link

Assessment and Quantitation of Stent Results by Intracoronary Optical Coherence Tomography

Maehara A, Matsumura M, Mintz GS. Keywords: dissection; malapposition; OCT; stent; minimal stent area

ABSTRACT

Optical coherence tomography evaluation of post stent results includes stent expansion as the absolute minimum stent area ratio by comparing the minimum stent area with the proximal and distal reference lumen areas or mean stent area defined as the total stent volume divided by the analyzed stent length; stent strut malapposition defined when the distance from the center of the blooming artifact and the surface of plaque is greater than the sum of stent thickness and polymer thickness; tissue protrusion through the stent struts; semiquantitative residual thrombus evaluation; and stent edge dissection.