CBS 2019
CBSMD教育中心
中 文

光学相关断层扫描

Abstract

Recommended Article

Nonculprit Lesion Plaque Morphology in Patients With ST-Segment–Elevation Myocardial Infarction: Results From the COMPLETE Trial Optical Coherence Tomography Substudys Coronary Atherosclerosis T1-Weighed Characterization With Integrated Anatomical Reference: Comparison With High-Risk Plaque Features Detected by Invasive Coronary Imaging Changes in Coronary Plaque Composition in Patients With Acute Myocardial Infarction Treated With High-Intensity Statin Therapy (IBIS-4): A Serial Optical Coherence Tomography Study Impact of low tissue backscattering by optical coherence tomography on endothelial function after drug-eluting stent implantation Coronary Artery Intraplaque Microvessels by Optical Coherence Tomography Correlate With Vulnerable Plaque and Predict Clinical Outcomes in Patients With Ischemic Angina A new optical coherence tomography-based calcium scoring system to predict stent underexpansion Joint consensus on the use of OCT in coronary bifurcation lesions by the European and Japanese bifurcation clubs Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention: Outcomes From the Pan-London PCI Cohort

Original Research2018 Apr 6;13(18):e2182-e2189.

JOURNAL:EuroIntervention. Article Link

A new optical coherence tomography-based calcium scoring system to predict stent underexpansion

Fujino A, Mintz GS, Matsumura M et al. Keywords: calcified stenosis; OCT

ABSTRACT


AIMS - This was a retrospective study to develop and validate an optical coherence tomography (OCT)-based calcium scoring system to predict stent underexpansion.


METHODS AND RESULTS - A calcium score was developed using 128 patients with pre- and post-stent OCT (test cohort) and then validated in an external cohort of 133 patients. In the test cohort, a multivariable model showed that the independent predictors of stent expansion were maximum calcium angle per 180° (regression coefficient: -7.43; p<0.01), maximum calcium thickness per 0.5 mm (-3.40; p=0.02), and calcium length per 5 mm (-2.32; p=0.01). A calcium score was then defined as 2 points for maximum angle >180°, 1 point for maximum thickness >0.5 mm, and 1 point for length >5 mm. In the validation cohort, the lesions with calcium score of 0 to 3 had excellent stent expansion, whereas the lesions with a score of 4 had poor stent expansion (96% versus 78%, p<0.01). On multivariate analysis the calcium score was an independent predictor of stent underexpansion.

CONCLUSIONS - An OCT-based calcium scoring system can help to identify lesions that would benefit from plaque modification prior to stent implantation. Lesions with calcium deposit with maximum angle >180°, maximum thickness >0.5 mm, and length >5 mm may be at risk of stent underexpansion.