CBS 2019
CBSMD教育中心
中 文

光学相关断层扫描

Abstract

Recommended Article

Randomized comparison of stent strut coverage following angiography- or optical coherence tomography-guided percutaneous coronary intervention Vascular response and healing profile of everolimus-eluting bioresorbable vascular scaffolds for percutaneous treatment of chronic total coronary occlusions: A one-year optical coherence tomography analysis from the GHOST-CTO registry Clinical Predictors for Lack of Favorable Vascular Response to Statin Therapy in Patients With Coronary Artery Disease: A Serial Optical Coherence Tomography Study Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography Assessment of the coronary calcification by optical coherence tomography Covering our tracks – optical coherence tomography to assess vascular healing Volumetric characterization of human coronary calcification by frequency-domain optical coherence tomography

Original Research2017 May 15;119(10):1512-1517.

JOURNAL:Am J Cardiol. Article Link

Comparison of Coronary Intimal Plaques by Optical Coherence Tomography in Arteries With Versus Without Internal Running Vasa Vasorum

Amano H, Koizumi M, Okubo R et al. Keywords: OCT; internal running vasa vasorum; plaque vulnerability; blood flow

ABSTRACT


It has been reported that the internal running vasa vasorum (VV) was associated with plaque vulnerability, and microchannels in optical coherence tomography (OCT) are consistent pathologically with VV. We investigated plaque vulnerability and incidence of slow flow during percutaneous coronary intervention of the internal longitudinal running VV. Subjects were 71 lesions that underwent OCT before percutaneous coronary intervention. Internal running VV was defined as intraplaque neovessels running from the adventitia to plaque. Lesions with internal running VV were found in 47% (33 of 71). Compared with lesions without internal running VV, lesions with internal running VV showed significantly higher incidence of intimal laceration (64% [21 of 33] vs 16% [6 of 38], p <0.001), lipid-rich plaque (79% [26 of 33] vs 26% [10 of 38], p <0.001), plaque rupture (52% [17 of 33] vs 13% [5 of 38], p <0.001), thin-cap fibroatheroma (58% [19 of 33] vs 11% [4 of 38], p <0.001), macrophage accumulation (61% [20 of 33] vs 26% [10 of 38], p = 0.004), intraluminal thrombus (36% [12 of 33] vs 3% [1 of 38], p <0.001), and slow flow after stent implantation (42% [14 of 33] vs 13% [5 of 38], p = 0.007). The multivariable analysis showed that internal running VV was an independent predictor of slow flow after stent implantation (odds ratio 4.23, 95% confidence interval 1.05 to 17.01, p = 0.042). In conclusion, compared with those without, plaques with internal running VV in OCT had high plaque vulnerability with more intimal laceration, lipid-rich plaque, plaque rupture, thin-cap fibroatheroma, macrophage accumulation, and intraluminal thrombus, and they had high incidence of slow flow after stent implantation.