CBS 2019
CBSMD教育中心
中 文

血流储备分数

Abstract

Recommended Article

Coronary Microcirculation Downstream Non-Infarct-Related Arteries in the Subacute Phase of Myocardial Infarction: Implications for Physiology-Guided Revascularization Utilization and Outcomes of Measuring Fractional Flow Reserve in Patients With Stable Ischemic Heart Disease Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity Diagnostic Performance of Angiogram-Derived Fractional Flow Reserve: A Pooled Analysis of 5 Prospective Cohort Studies Coronary Physiology in the Cardiac Catheterization Laboratory Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps)

Clinical TrialNovember 4, 2021

JOURNAL:N Engl J Med. Article Link

Fractional Flow Reserve–Guided PCI as Compared with Coronary Bypass Surgery

WF Fearon, FM Zimmermann, the FAME 3 Investigators et al. Keywords: FFR-guided vs. angiography-guided procedure; PCI vs. CABG; multivessel; RCT

ABSTRACT

BACKGROUND - Patients with three-vessel coronary artery disease have been found to have better outcomes with coronary-artery bypass grafting (CABG) than with percutaneous coronary intervention (PCI), but studies in which PCI is guided by measurement of fractional flow reserve (FFR) have been lacking.

 

METHODS - In this multicenter, international, noninferiority trial, patients with three-vessel coronary artery disease were randomly assigned to undergo CABG or FFR-guided PCI with current-generation zotarolimus-eluting stents. The primary end point was the occurrence within 1 year of a major adverse cardiac or cerebrovascular event, defined as death from any cause, myocardial infarction, stroke, or repeat revascularization. Noninferiority of FFR-guided PCI to CABG was prespecified as an upper boundary of less than 1.65 for the 95% confidence interval of the hazard ratio. Secondary end points included a composite of death, myocardial infarction, or stroke; safety was also assessed.

 

RESULTS - A total of 1500 patients underwent randomization at 48 centers. Patients assigned to undergo PCI received a mean (±SD) of 3.7±1.9 stents, and those assigned to undergo CABG received 3.4±1.0 distal anastomoses. The 1-year incidence of the composite primary end point was 10.6% among patients randomly assigned to undergo FFR-guided PCI and 6.9% among those assigned to undergo CABG (hazard ratio, 1.5; 95% confidence interval [CI], 1.1 to 2.2), findings that were not consistent with noninferiority of FFR-guided PCI (P=0.35 for noninferiority). The incidence of death, myocardial infarction, or stroke was 7.3% in the FFR-guided PCI group and 5.2% in the CABG group (hazard ratio, 1.4; 95% CI, 0.9 to 2.1). The incidences of major bleeding, arrhythmia, and acute kidney injury were higher in the CABG group than in the FFR-guided PCI group.

 

CONCLUSIONS - In patients with three-vessel coronary artery disease, FFR-guided PCI was not found to be noninferior to CABG with respect to the incidence of a composite of death, myocardial infarction, stroke, or repeat revascularization at 1 year. (Funded by Medtronic and Abbott Vascular; FAME 3 ClinicalTrials.gov number, NCT02100722. )