CBS 2019
CBSMD教育中心
中 文

血流储备分数

Abstract

Recommended Article

Physiologic Characteristics and Clinical Outcomes of Patients With Discordance Between FFR and iFR Robustness of Fractional Flow Reserve for Lesion Assessment in Non-Infarct-Related Arteries of Patients With Myocardial Infarction Individual Lesion-Level Meta-Analysis Comparing Various Doses of Intracoronary Bolus Injection of Adenosine With Intravenous Administration of Adenosine for Fractional Flow Reserve Assessment Fractional Flow Reserve-Guided Multivessel Angioplasty in Myocardial Infarction Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease Fractional Flow Reserve–Guided PCI for Stable Coronary Artery Disease Lesion-Specific and Vessel-Related Determinants of Fractional Flow Reserve Beyond Coronary Artery Stenosis Retrospective Comparison of Long-Term Clinical Outcomes Between Percutaneous Coronary Intervention and Medical Therapy in Stable Coronary Artery Disease With Gray Zone Fractional Flow Reserve - COMFORTABLE Retrospective Study

Original ResearchSeptember 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Physiologic Characteristics and Clinical Outcomes of Patients With Discordance Between FFR and iFR

SH Lee, KH Choi, JM Lee et al. Keywords: coronary artery disease; coronary flow reserve; fractional flow reserve; instantaneous wave-free ratio; prognosis

ABSTRACT


OBJECTIVES - The study evaluated the physiologic characteristics of discordant lesions between instantaneous wave-free ratio (iFR) and fractional flow reserve (FFR) and the prognosis at 5 years.

 

BACKGROUND - FFR or iFR have been standard methods for assessing the functional significance of coronary artery stenosis. However, limited data exist about the physiologic characteristics of discordant lesions and the prognostic implications resulting from these lesions.

 

METHODS - A total of 840 vessels from 596 patients were classified according to iFR and FFR; high iFRhigh FFR (n = 580), low iFRhigh FFR (n = 40), high iFRlow FFR (n = 69), and low iFRlow FFR (n = 128) groups, which were compared with a control group (n = 23). The differences in coronary circulatory indices including the coronary flow reserve (CFR), index of microcirculatory resistance (IMR), and resistance reserve ratio (RRR) (resting distal arterial pressure × mean transit time / hyperemic distal arterial pressure × hyperemic mean transit time), which reflect the vasodilatory capacity of coronary microcirculation, were compared. Patient-oriented composite outcomes (POCO) at 5 years including all-cause death, any myocardial infarction, and any revascularization were compared among patients with deferred lesions.

 

RESULTS- In the low iFRhigh FFR group, CFR, RRR, and IMR measurements were similar to the low iFRlow FFR group: CFR 2.71 versus 2.43 (p = 0.144), RRR 3.36 versus 3.68 (p = 0.241), and IMR 18.51 versus 17.38 (p = 0.476). In the high iFRlow FFR group, the CFR, RRR, and IMR measurements were similar to the control group: CFR 2.95 versus 3.29 (p = 0.160), RRR 4.28 versus 4.00 (p = 0.414), and IMR 17.44 versus 17.06 (p = 0.818). Among the 4 groups, classified by iFR and FFR, CFR and RRR were all significantly different, except for IMR. However, there were no significant differences in the rates of POCO, regardless of discordance between the iFR and FFR. Only the low iFRlow FFR group had a higher POCO rate compared with the high iFRhigh FFR group (adjusted hazard ratio: 2.46; 95% confidence interval: 1.17 to 5.16; p = 0.018).

 

CONCLUSIONS-  Differences in coronary circulatory function were found, especially in the vasodilatory capacity between the low iFRhigh FFR and high iFRlow FFR groups. FFRiFR discordance was not related to an increased risk of POCO among patients with deferred lesions at 5 years. (Clinical, Physiological and Prognostic Implication of Microvascular Status; NCT02186093; Physiologic Assessment of Microvascular Function in Heart Transplant Patients; NCT02798731)