CBS 2019
CBSMD教育中心
中 文

经导管主动脉瓣置换

Abstract

Recommended Article

Right ventricular function and outcome in patients undergoing transcatheter aortic valve replacement Infective Endocarditis After Transcatheter Aortic Valve Replacement Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis Short Length of Stay After Elective Transfemoral Transcatheter Aortic Valve Replacement Is Not Associated With Increased Early or Late Readmission Risk Infective endocarditis after transcatheter aortic valve implantation: a nationwide study Randomized Evaluation of TriGuard 3 Cerebral Embolic Protection After Transcatheter Aortic Valve Replacement: REFLECT II Comparison of 1-Year Pre- And Post-Transcatheter Aortic Valve Replacement Hospitalization Rates: A Population-Based Cohort Study Thrombotic Versus Bleeding Risk After Transcatheter Aortic Valve Replacement: JACC Review Topic of the Week

Original Research2020 Dec 30;jeaa342.

JOURNAL:Eur Heart J Cardiovasc Imaging. Article Link

Right ventricular function and outcome in patients undergoing transcatheter aortic valve replacement

M Koschutnik, V Dannenberg, C Nitsche et al. Keywords: CMR; RV function; TAVR; aortic stenosis; echocardiography; outcome

ABSTRACT

AIMS - Right ventricular dysfunction (RVD) on echocardiography has been shown to predict outcomes in patients undergoing transcatheter aortic valve replacement (TAVR). However, a comparison with the gold standard, RV ejection fraction (EF) on cardiovascular magnetic resonance (CMR), has never been performed.

 

METHODS AND RESULTS - Consecutive patients scheduled for TAVR underwent echocardiography and CMR. RV fractional area change (FAC), tricuspid annular plane systolic excursion, RV free-lateral-wall tissue Doppler (S'), and strain were assessed on echocardiography, and RVEF on CMR. Patients were prospectively followed. Adjusted regression analyses were used to report the strength of association per 1-SD decline for each RV function parameter with (i) N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels, (ii) prolonged in-hospital stay (>14 days), and (iii) a composite of heart failure hospitalization and death. Two hundred and four patients (80.9 ± 6.6 y/o; 51% female; EuroSCORE-II: 6.3 ± 5.1%) were included. At a cross-sectional level, all RV function parameters were associated with NT-proBNP levels, but only FAC and RVEF were significantly associated with a prolonged in-hospital stay [adjusted odds ratio 1.86, 95% confidence interval (CI) 1.07-3.21; P = 0.027 and 2.29, 95% CI 1.43-3.67; P = 0.001, respectively]. A total of 56 events occurred during follow-up (mean 13.7 ± 9.5 months). After adjustment for the EuroSCORE-II, only RVEF was significantly associated with the composite endpoint (adjusted hazard ratio 1.70, 95% CI 1.32-2.20; P < 0.001).

 

CONCLUSION - RVD as defined by echocardiography is associated with an advanced disease state but fails to predict outcomes after adjustment for pre-existing clinical risk factors in TAVR patients. In contrast, RVEF on CMR is independently associated with heart failure hospitalization and death.