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Background Although many observational studies have shown an association between plasma homocysteine levels and cardio-
vascular diseases, controversy remains. In this study, we estimated the role of increased plasma homocysteine
levels on the etiology of coronary heart disease and acute myocardial infarction.

...................................................................................................................................................................................................
Methods A two-sample Mendelian randomization study on disease was conducted, i.e. “coronary heart disease”

(n = 184,305) and “acute myocardial infarction” (n = 181,875). Nine single nucleotide polymorphisms, which were
genome-wide significantly associated with plasma homocysteine levels in 57,644 subjects from the Coronary
ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease
(C4D) Genetics (CARDIoGRAMplusC4D) consortium genome-wide association study and were known to be
associated at p < 5�10–8, were used as an instrumental variable.

...................................................................................................................................................................................................
Results None of the nine single nucleotide polymorphisms were associated with coronary heart disease or acute myocar-

dial infarction (p > 0.05 for all). Mendelian randomization analysis revealed no causal effects of plasma homocysteine
levels, either on coronary heart disease (inverse variance weighted; odds ratio = 1.015, 95% confidence inter-
val = 0.923–1.106, p = 0.752) or on acute myocardial infarction (inverse variance weighted; odds ratio = 1.037, 95%
confidence interval = 0.932–1.142, p = 0.499). The results were consistent in sensitivity analyses using the weighted
median and Mendelian randomization-Egger methods, and no directional pleiotropy (p = 0.213 for coronary heart
disease and p = 0.343 for acute myocardial infarction) was observed. Sensitivity analyses confirmed that plasma
homocysteine levels were not significantly associated with coronary heart disease or acute myocardial infarction.

...................................................................................................................................................................................................
Conclusions The findings from this Mendelian randomization study indicate no causal relationship between plasma homocyst-

eine levels and coronary heart disease or acute myocardial infarction. Conflicting findings from observational stud-
ies might have resulted from residual confounding or reverse causation.
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..Introduction

With the improvement of people’s standard of living, the change in
dietary structure and the increase in population ageing, the numbers
of patients with coronary heart disease (CHD) and acute myocardial
infarction (AMI) are increasing. Many risk factors contribute to car-
diovascular disease (CVD), including age, sex, smoking, obesity,
hypertension, hyperlipidemia, diabetes, family genetic history and
other abnormalities.1–4 In addition, homocysteine (Hcy), as a newly
discovered risk factor, has gradually become a research hotspot.5

Not only can it affect blood pressure levels, serum glucose levels, and
lipid and lipoprotein metabolism, but it could also promote the devel-
opment of inflammation and result in CVD.6 An epidemiological
study suggests that the incidence of high homocysteine (HHcy) levels
in Chinese populations is greater than that in European and
American populations. Due to the influence of daily life habits, diet
structure, genetics, and the environment, the incidence of HHcy lev-
els in China has gradually increased.7 Such epidemiological trends
have also gradually attracted widespread attention.

Traditional observational epidemiology has met many challenges in
discovering the cause of disease and causal inference. When
researchers resort to the design of randomized controlled trials
(RCTs) to find evidence of a direct association between exposure
factor X and disease outcome Y, there are limitations due to human
medical ethics and the inherent characteristics of many experimental
designs.8 These trials are difficult to carry out. In recent years, the
Mendelian randomization (MR) design has introduced the concept of
an instrumental variable (IV) from econometrics, treating genetic
variation as a tool variable of exposure factors to be studied, which
provides an effective solution to the above problems.9

Two-sample Mendelian randomization (TSMR) analysis is a com-
monly used method with several advantages.10 First, with the advent
of genome-wide association studies (GWASs), large amounts of data
from GWASs have been published. Second, using the association
established by observational studies to conduct two-cohort studies is
equivalent to enlarging the sample size of the study, which can

improve the effectiveness of the test. In addition, the sample size of
published GWASs is usually large, and the number of IVs is extremely
large, which increases the genetic interpretation of IVs with regard to
exposure and is more conducive to accurate and reliable results.11 In
this study, we verified the assumption that CHD and AMI are caused
by HHcy levels. Next, we estimated the causal effect of Hcy levels on
CHD and AMI by the TSMR method.

Methods

Data sources
We selected genetic variants associated with plasma Hcy levels and then
extracted the corresponding effect sizes for CHD and AMI using the largest
GWAS summary-level dataset.12 No ethics approval was needed for our
study due to this being a re-analysis of previously collected and published
data. Plasma Hcy data (n = 57,644) were extracted from the UK Biobank
imputed genotype data (http://www.ebi.ac.uk/efo/EFO_0004578).13,14

Additionally, CHD was confirmed in more than one of the three major
coronary arteries or their major branches (branched diameter >_ 2 mm)
(>_50%), and AMI was diagnosed based on common standards including (a)
symptoms of persistent ischemic chest pain; (b) ischemic changes on elec-
trocardiogram with dynamic evolution; and (c) increases in the levels car-
diac biomarkers according to the published guidelines. The dataset was
acquired from the Coronary ARtery DIsease Genome wide Replication
and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease
(C4D) Genetics (CARDIoGRAMplusC4D) consortium (n = 184,305 for
CHD, and n = 171,875 for AMI).12 All of the datasets were from European
populations included in RCTs and population-based studies. Genomic con-
trol was applied to each sample to correct for inflated test statistics due to
potential population stratification in our datasets.

Study design
In our TSMR analysis, the genetic variants that were included as IVs satis-
fied the following three assumptions and are shown in Figure 1: (a) IVs
must be strongly associated with the outcomes, including CHD and AMI;
(b) IVs should be independent of any known confounders; and (c) the
selected IVs should be conditionally independent of the outcomes (CHD

1

3

2

IVs
Exposures

Homocysteine
levels

Outcomes
CHD/AMI

Confounders

Figure 1 Schematic representation of two-sample Mendelian randomization (TSMR) analysis. Three assumptions of Mendelian randomization
(MR) analysis are as follows: (1) instrumental variables (IVs) must be associated with plasma homocysteine levels, (2) IVs must not be associated with
confounders, and (3) IVs must influence coronary heart disease (CHD)/acute myocardial infarction (AMI) only through plasma homocysteine levels.
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.or AMI), exposure (plasma Hcy levels) and confounders. Satisfaction of
the second and third assumptions serves as a definition of independence
from pleiotropy.

Selection and validation of IVs
IVs had to be associated with the exposure (plasma Hcy levels). To en-
sure a close relationship between IVs and plasma Hcy levels, the selected
p value had to be less than 5� 10-8 in the corresponding GWAS
summary-level dataset. In addition, we used PLINK 1.9015 to calculate the
pairwise-linkage disequilibrium (LD) to ensure independence among
the selected IVs. When r2>0.001, the single nucleotide polymorphisms
(SNPs) were removed from our analysis.

The selected IVs were conditionally independent of CHD or AMI,
given the traits related to plasma Hcy levels, and independent of any
known confounders. This ensures that the IVs influence CHD or AMI
only through plasma Hcy levels rather than another pathway or con-
founders. This is consistent with the previous two assumptions.16 First,
we obtained the corresponding estimates of the effects of these variables
on CHD or AMI. If the selected SNPs were not correlated with CHD or
AMI, we chose the proxy SNPs that were highly correlated (r2>0.8)
based on the SNP Annotation and Proxy (SNAP) search system for sub-
stitution.17 Then, we employed MR-Egger regression to evaluate the hori-
zontal pleiotropic pathway.18 Subsequently, we removed any palindromic
SNPs with minor allele frequencies above 0.3 to ensure that the effects of
the SNPs on the exposure (plasma Hcy levels) corresponded to
the same allele as did their effects on CHD or AMI.19 Next, we used the
GWAS Catalog (https://www.ebi.ac.uk/gwas/) to check for the associa-
tions between selected IVs and to adjust for potential confounding
factors. Additionally, we calculated the F statistic with a Web application
(https://sb452.shinyapps.io/overlap/) to detect the association of selected
IVs with the exposure.20

Pleiotropy assessment
We used MR-Egger regression to evaluate the horizontal pleiotropic
pathway between IVs and CHD or AMI, independent of plasma Hcy lev-
els.18 MR-Egger regression, as an effective way to examine the publication
bias in meta-analysis, was developed from Egger regression. This
approach is expressed as ai = bci + b0. In this equation, ai is the effect
between IVs and CHD or AMI; ci is the estimated effect between IVs and
plasma Hcy levels; slope b is the estimated causal effect of plasma Hcy
levels on CHD or AMI; and intercept b0 is the estimated average value of

the horizontal pleiotropic pathway. If the intercept has p > 0.05, then that
indicates no horizontal pleiotropic pathway exists. In addition, the slope
also gave us the estimated pleiotropy-corrected causal effect. However,
this estimate may be underpowered if the selected SNPs collectively fail
to explain a large proportion of the variance in the exposure.18

TSMR analysis
We employed the inverse variance-weighted (IVW) method to evaluate
the causal effect between plasma Hcy levels and CHD or AMI in the
TSMR analysis in this study.21 The causal effect b was estimated and is
shown as wi (ai/ci). In this equation, i refers to the IVs, ai represents the
association effect of IVs on CHD or AMI, ci defines the association effect
of IVs on plasma Hcy levels, and wi represents the weights of the causal
effect of plasma Hcy levels on CHD or AMI.

TSMR sensitivity analysis
The weighted median, simple median, maximum likelihood and penalized
weighted median methods were employed to analyze the follow-up
sensitivity in our current study.22 Compared with the IVW, the weighted
median, simple median, maximum likelihood and penalized weighted me-
dian methods are more robust for individual genes with strongly outlying
causal estimates and generate a consistent estimate of the causal effect
when valid IVs exceed 50%.16,23 Subsequently, we used a leave-one-out
sensitivity analysis to determine whether the influence of a single SNP
disproportionately affected the association. Then, we performed TSMR
analysis again leaving out each SNP in turn, and the overall analysis includ-
ing all SNPs was shown for comparison.24 All of the analyses were imple-
mented by the “TwoSampleMR” package in the R software environment.

Results

IV selection and validation
In total, we obtained nine IVs for CHD and nine IVs for LD-independ-
ent AMI (r2<0.001). These IVs achieved genome-wide significance
(p < 5�10-8) in plasma Hcy level datasets, but not all of the SNPs were
directly found in the CHD or AMI datasets. The details of all
independent IVs in this TSMR analysis are shown in Table 1.
Subsequently, we used the intercept term to estimate the exposures
from MR-Egger regression and found that no horizontal pleiotropic

............................................ ............................................ .............................................

....................................................................................................................................................................................................................

Table 1 Genome-wide significant single nucleotide polymorphisms (SNPs) for homocysteine (Hcy) levels and their
association with coronary heart disease (CHD) and acute myocardial infarction (AMI).

Hcy CHD AMI

SNP Gene E/O allele Eaf Beta SE p Beta SE p Beta SE p

rs12780845 CUBN A/G 0.65 0.0529 0.009184 8.00� 10-10 –0.004668 0.010052 0.642386 –0.001224 0.011201 0.912996

rs154657 DPEP1 A/G 0.47 0.0963 0.006888 2.00� 10-43 0.015338 0.010241 0.134226 0.026263 0.01144 0.021692

rs1801133 MTHFR A/G 0.34 0.1583 0.007653 4.00� 10-104 –0.014295 0.010761 0.18403 –0.012974 0.011941 0.277272

rs1801222 CUBN A/G 0.34 0.0453 0.006888 8.00� 10-10 0.007535 0.01048 0.472165 0.005501 0.011641 0.636532

rs2851391 CBS T/C 0.47 0.056 0.008163 2.00� 10-12 0.010318 0.009466 0.275702 0.004664 0.010479 0.656272

rs4660306 MMACHC T/C 0.33 0.0435 0.006888 2.00� 10-9 0.000713 0.010004 0.943179 –0.006438 0.0111 0.561914

rs548987 SLC17A3 C/G 0.13 0.0597 0.009949 1.00� 10-8 0.005065 0.01424 0.722074 0.002453 0.016096 0.878883

rs838133 FUT2 A/G 0.45 0.0422 0.007143 7.00� 10-9 –0.000168 0.011573 0.988418 0.003258 0.01273 0.797976

rs9369898 MUT A/G 0.62 0.0449 0.007143 2.00� 10-10 0.006616 0.009389 0.481011 0.01372 0.010397 0.186951

Eaf: allele frequency; E/O allele: effect allele/other allele; SE: standard error.
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pathway existed in our TSMR analysis (Table 2). We analyzed the F sta-
tistics to identify the strength of the relationship between IVs and expo-
sures. If the F statistics were greater than 10, this was considered strong
enough to mitigate any bias from the causal IV estimate. The F statistics
for our selected IVs were 1280 for CHD and 2561 for AMI, which
were strong enough to mitigate any bias from the causal IV estimate.

Analyzed by TSMR and sensitivity analysis
According to the IVW analysis results, the odds ratio (OR) and 95%
confidence interval (CI) per unit increase in plasma Hcy level within
CHD were 1.015 (0.923–1.106), p = 0.752, and 1.037 (0.932–1.142),
p = 0.499. These results suggest that genetically predicted plasma
Hcy levels were not associated with CHD or AMI (Figure 2). The
overall estimates, calculated by IVW or MR-Egger, did not reveal
associations between plasma Hcy levels and CHD or AMI (Figure 3).
Sensitivity analyses using the leave-one-out associations approach
also confirmed the lack of associations (Figure 4).

Discussion

The concentration of plasma Hcy increases with increasing age and is
positively correlated with dietary methionine intake but negatively
correlated with plasma folic acid and vitamin B6 and B12 levels.

Smoking, drinking, consuming coffee and overweight status can in-
crease the plasma Hcy concentration, and their combined effect is
greater than the single effect.25 It is generally believed that a fasting
plasma Hcy>10 lmol/l is defined as a HHcy level. Moreover, many
studies have suggested that a HHcy level is an independent risk factor
for CVD and stroke. A direct association between plasma Hcy levels
and CVD has been found in observational population epidemiological
studies, such as the discovery of HHcy in the general healthy popula-
tion. High cysteine levels increase the risk of CVD.26 Recently, Olsen
et al.27 showed a potential interaction between plasma total Hcy and
serum Vitamin A (Vit-A, retinol) in relation to incident AMI. Plasma
total Hcy was higher among AMI patients in the upper versus lower
Vit-A tertile, and was associated with AMI only in the upper Vit-A ter-
tile. These findings may shed light on the hitherto unclear relationship
between Hcy and CVD. A meta-analysis of prospective studies found
that reduced Hcy levels were associated with a reduced risk of CHD
and stroke.28 Hcy may cause atherosclerosis, leading to CHD and
AMI, through the following five pathways: (a) vascular endothelial cell
damage and dysfunction; (b) dyslipidemia; (c) stimulating vascular
smooth muscle cell proliferation; (d) enhancing coagulation function
and inducing thrombosis; and (e) promoting the expression of inflam-
matory factors.29–31

However, other scholars have questioned the conclusion that
HHcy is not an independent risk factor for CVD and stroke. The
latest meta-analysis from Cochrane, Oxford Evidence-based
Medicine, in 2017 showed that HHcy can increase the stroke risk and
that HHcy intervention was limited to patients with hypertension
and genetic mutations in China, suggesting that HHcy could not be
regarded as an independent risk factor, like hypertension, hyperchol-
esterolemia, smoking, and diabetes.32 Cohort studies have found that
some inflammatory biological factors, such as C-reactive protein and
Hcy levels, can be used as biomarkers to improve the predictive
ability of CVD prediction models constructed with traditional risk
factors, especially for low- and medium-risk groups, such as the
Framingham, the Multi-Ethnic Study of Atherosclerosis (MESA), and
the National Health and Nutrition Examination Survey III (NHANES
III) models.33 However, in the MESA and NHANES III models, it was

.................................................................................................

Table 2 Mendelian randomization (MR)-Egger regres-
sion intercepts.

Exposure Outcome Intercepts (95% CI) p-Value

Homocysteine levels CHD 0.010 (–0.004–0.024) 0.213

Homocysteine levels AMI 0.009 (–0.008–0.025) 0.343

AMI: acute myocardial infarction; CHD: coronary heart disease; CI: confidence
interval.
The significant result (p > 0.05) indicates that the y-intercept of the MR-Egger re-
gression line is not significantly different from zero and thus no pleiotropy exists.

Exposure/outcome

Homocysteine levels/CHD inverse variance weighted 9 1.015 (0.923 to 1.106)
1.015 (0.923 to 1.107)
1.089 (0.925 to 1.252)
0.916 (0.789 to 1.042)
0.915 (0.794 to 1.036)
1.037 (0.932 to 1.142)
1.037 (0.935 to 1.14)
1.08 (0.884 to 1.277)

0.967 (0.826 to 1.108)
0.951 (0.817 to 1.086)

Hazard ratio

0.752
0.751
0.31
0.17
0.15

0.499
0.483
0.441
0.64
0.47

0.
77
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Maximum likelihood
Simple median

Weighted median
Penalised weighted median

Homocysteine levels/AMI inverse variance weighted
Maximum likelihood

Simple median
Weighted median

Penalised weighted median

Methods nSNP
Hazard ratio

(95% CI)
P-value

Figure 2 Two-sample Mendelian randomization of plasma homocysteine levels and the risk of coronary heart disease (CHD) or acute myocardial
infarction (AMI). We used the unit increase in plasma homocysteine levels genome-wide association study (GWAS ) summary-level statistics. The
results are standardized to a one-unit increase in exposure. CI: confidence interval; SNP: single nucleotide polymorphism.
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..observed that when Hcy was added to the traditional risk factors
used for prediction, the diagnostic accuracy of the working character-
istic curve increased by only 1.6% and 2.5%, respectively, and the
predictive ability of the model only slightly improved. Such a small
change is of little significance to patient management, as is the case
from the perspective of public health.34 The American Academy of
Cardiology (ACC)/American Heart Association (AHA) guidelines for
cardiovascular risk assessment in 201335 and the European guidelines
for clinical practice in CVD in 201236 did not regard HHcy as a risk
factor for CVD.

RCTs are the most powerful method of demonstrating the
hypothesis of etiology in epidemiological research. However, RCTs

require more rigorous research design and cost more. Therefore, it
is difficult to implement RCTs. The application of MR in traditional
epidemiology can ingeniously remedy the shortcomings of traditional
epidemiological research in identifying the etiology, such as con-
founding factors and unclear causal sequence, and provide new ideas
and methods for epidemiological research with regard to etiology.37

Since the genotype of the offspring is also inherited randomly from
their parents, it is a very reliable method to use the SNP as a genetic
variable tool to infer a causal relationship between two factors. In re-
cent years, MR research has been described by some researchers as
the best alternative to RCTs.38 In our study, we analyzed the correl-
ation between plasma Hcy levels and CHD or AMI with the aid of a

rs2851391

rs1801222

rs154657

rs9369898

rs548987

rs4660306

rs838133

rs12780845

rs1801133

All - egger

All - IVW

Outcome

(a) (b)

(c) SNP
Hazard ratio

(95% CI)
P-value

CHD

AMI

rs12780845 0.916 (0.543 to 1.288) 0.642
1.173 (0.964 to 1.381) 0.134
0.914 (0.78 to 1.047) 0.184

1.181 (0.728 to 1.634) 0.472
1.202 (0.871 to 1.534) 0.276
1.017 (0.566 to 1.467) 0.943
1.089 (0.621 to 1.556) 0.722
0.996 (0.459 to 1.534) 0.988
1.159 (0.749 to 1.569) 0.481
1.015 (0.923 to 1.106) 0.752
0.901 (0.709 to 1.094) 0.326
0.977 (0.562 to 1.392) 0.913
1.314 (0.081 to 1.546) 0.022
0.921 (0.773 to 1.069) 0.277
1.129 (0.625 to 1.633) 0.637
1.087 (0.72 to 1.454) 0.656

0.862 (0.362 to 1.363) 0.562
1.042 (0.513 to 1.57) 0.879
1.08 (0.489 to 1.672) 0.798

1.357 (0.904 to 1.811) 0.187
1.037 (0.932 to 1.142) 0.499
0.938 (0.717 to 1.158) 0.585

rs154657
rs1801133
rs1801222
rs2851391
rs4660306
rs548987
rs838133
rs9369898

rs12780845
rs154657
rs1801133
rs1801222
rs2851391
rs4660306
rs548987
rs838133
rs9369898

All - inverse variance weighted
All - MR egger

All - inverse variance weighted
All - MR egger

0.5 1 1.5
Hazard ratio

2

rs9369898

rs154657

rs1801222

rs2851391

rs838133

rs548987

rs12780845

rs1801133

rs4660306

All - egger

All - IVW

–0.3 0.0
MR effect size for

‘exposure (unit increase)’ on ‘outcome’
MR effect size for

‘exposure (unit increase)’ on ‘outcome’

0.3 0.6 –0.4 0.0 0.4 0.8

Figure 3 Results of the single- and multi-single nucleotide polymorphism (SNP) analyses for the SNP effect of plasma homocysteine level on out-
comes. (a) Coronary heart disease (CHD); (b) acute myocardial infarction (AMI); and (c) the details about the results. CI: confidence interval; IVW:
inverse variance-weighted; MR: Mendelian randomization.
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.large-scale GWAS. It was found that an increase in Hcy levels did not
directly lead to the occurrence of CHD or AMI. More recently, Chen
et al.39 also assessed the association between serum Hcy levels and
ST-segment elevation myocardial infarction (STEMI), and showed
that Hcy was not elevated in STEMI patients regardless of Killip sever-
ity. These findings suggest that Hcy as a lone risk factor in AMI
patients is small and that the association with outcome is quite fragile.
Hcy may be a bystander instead of a causative factor.

Study limitations
There were several limitations in our studies. First, because we only
used summary statistics and had no access to the original individual
clinical outcome measures, we could not conduct analyses stratified

by subtypes of CHD or AMI. Second, different standards of quality
control in individual-level GWASs may affect our results. Therefore,
the results cannot be easily generalized. Finally, we only reveal the re-
lationship between homocysteine and CHD or AMI from a genetic
point of view, without involving other environmental factors.

Conclusions

Using a genetic approach, we found that plasma Hcy levels are not
causally associated with CHD or AMI risk. However, additional
human and animal studies are still needed to further confirm our
TSMR results.
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Figure 4 Sensitivity analyses using the leave-one-out approach for the association of plasma homocysteine level with outcomes. (a) Coronary
heart disease (CHD); (b) acute myocardial infarction (AMI); and (c) the details about the results. CI: confidence interval; MR: Mendelian randomiza-
tion; SNP: single nucleotide polymorphism.
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