CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

2020 AHA/ACC Key Data Elements and Definitions for Coronary Revascularization A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Coronary Revascularization) Individualizing Revascularization Strategy for Diabetic Patients With Multivessel Coronary Disease Clinician’s Guide to Reducing Inflammation to Reduce Atherothrombotic Risk Randomized Comparison Between Radial and Femoral Large-Bore Access for Complex Percutaneous Coronary Intervention Coronary Artery Calcium Is Associated with Left Ventricular Diastolic Function Independent of Myocardial Ischemia Impact of percutaneous coronary intervention extent, complexity and platelet reactivity on outcomes after drug-eluting stent implantation Level of Scientific Evidence Underlying the Current American College of Cardiology/American Heart Association Clinical Practice Guidelines Qualitative Methodology in Cardiovascular Outcomes Research: A Contemporary Look Optimal medical therapy improves clinical outcomes in patients undergoing revascularization with percutaneous coronary intervention or coronary artery bypass grafting: insights from the Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery (SYNTAX) trial at the 5-year follow-up A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): a randomised, single-blind, multicentre, non-inferiority, phase 3 trial

Review ArticleVolume 12, Issue 14, July 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance

P Sardar, JD Abbott, A Kundu et al. Keywords: artificial intelligence; interventional cardiology

ABSTRACT


Access to big data analyzed by supercomputers using advanced mathematical algorithms (i.e., deep machine learning) has allowed for enhancement of cognitive output (i.e., visual imaging interpretation) to previously unseen levels and promises to fundamentally change the practice of medicine. This field, known as “artificial intelligence” (AI), is making significant progress in areas such as automated clinical decision making, medical imaging analysis, and interventional procedures, and has the potential to dramatically influence the practice of interventional cardiology. The unique nature of interventional cardiology makes it an ideal target for the development of AI-based technologies designed to improve real-time clinical decision making, streamline workflow in the catheterization laboratory, and standardize catheter-based procedures through advanced robotics. This review provides an introduction to AI by highlighting its scope, potential applications, and limitations in interventional cardiology.