CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

Biological Phenotypes of Heart Failure With Preserved Ejection Fraction White Blood Cell Count and Major Adverse Cardiovascular Events After Percutaneous Coronary Intervention in the Contemporary Era: Insights From the PARIS Study (Patterns of Non-Adherence to Anti-Platelet Regimens in Stented Patients Registry) DK CRUSH系列研究总结 From Nonclinical Research to Clinical Trials and Patient-registries: Challenges and Opportunities in Biomedical Research Comparison of Benefit of Successful Percutaneous Coronary Intervention for Chronic Total Occlusion in Patients With Versus Without Reduced (≤40%) Left Ventricular Ejection Fraction Quantitative angiography methods for bifurcation lesions: a consensus statement update from the European Bifurcation Club High-Risk Coronary Atherosclerosis: Is It the Plaque Burden, the Calcium, the Lipid, or Something Else? Comparative analysis of recurrent events after presentation with an index myocardial infarction or ischaemic stroke 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association

Original Research2017 Aug 24;548(7668):413-419.

JOURNAL:Nature. Article Link

Correction of a pathogenic gene mutation in human embryos

Ma H, Marti-Gutierrez N, Mitalipov S et al. Keywords: genome editing; MYBPC3 mutation; inherited hypertrophic cardiomyopathy

ABSTRACT

Genome editing has potential for the targeted correction of germline mutations. Here we describe the correction of the heterozygous MYBPC3 mutation in human preimplantation embryos with precise CRISPR-Cas9-based targeting accuracy and high homology-directed repair efficiency by activating an endogenous, germline-specific DNA repair response. Induced double-strand breaks (DSBs) at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template. By modulating the cell cycle stage at which the DSB was induced, we were able to avoid mosaicism in cleaving embryos and achieve a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The efficiency, accuracy and safety of the approach presented suggest that it has potential to be used for the correction of heritable mutations in human embryos by complementing preimplantation genetic diagnosis. However, much remains to be considered before clinical applications, including the reproducibility of the technique with other heterozygous mutations.