CBS 2019
CBSMD教育中心
English

推荐文献

科研文章

荐读文献

Limitations of Repeat Revascularization as an Outcome Measure A Novel Familial Cardiac Arrhythmia Syndrome with Widespread ST-Segment Depression Alirocumab Reduces Total Nonfatal Cardiovascular and Fatal Events in the ODYSSEY OUTCOMES Trial Potential protective mechanisms of green tea polyphenol EGCG against COVID-19 Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials 稳定性冠心病诊断与治疗指南 Significantly less inappropriate shocks in ischemic patients compared to non-ischemic patients: The S-ICD experience of a high volume single-center Poor R-wave progression as a predictor of sudden cardiac death in general population and subjects with coronary artery disease Circadian Cadence and NR1D1 Tune Cardiovascular Disease Prognostic implication of lipidomics in patients with coronary total occlusion undergoing PCI

Review Article2017 Jul 11;70(2):196-211.

JOURNAL:J Am Coll Cardiol. Article Link

Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series

Sack MN, Fyhrquist FY, Kovacic JC et al. Keywords: apoptosis; mitochondria; necrosis; reactive oxygen species; senescence; sirtuin; telomere

ABSTRACT


The generation of reactive oxygen species (ROS) is a fundamental aspect of normal human biology. However, when ROS generation exceeds endogenous antioxidant capacity, oxidative stress arises. If unchecked, ROS production and oxidative stress mediate tissue and cell damage that can spiral in a cycle of inflammation and more oxidative stress. This article is part 1 of a 3-part series covering the role of oxidative stress in cardiovascular disease. The broad theme of this first paper is the mechanisms and biology of oxidative stress. Specifically, the authors review the basic biology of oxidative stress, relevant aspects of mitochondrial function, and stress-related cell death pathways (apoptosis and necrosis) as they relate to the heart and cardiovascular system. They then explore telomere biology and cell senescence. As important regulators and sensors of oxidative stress, telomeres are segments of repetitive nucleotide sequence at each end of a chromosome that protect the chromosome ends from deterioration.