CBS 2019
CBSMD教育中心
English

血管内超声指导

科研文章

荐读文献

Is intravascular ultrasound beneficial for percutaneous coronary intervention of bifurcation lesions? Evidence from a 4,314-patient registry Utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention for type C lesions Impact of Intravascular Ultrasound-Guided Drug-Eluting Stent Implantation on Patients With Chronic Kidney Disease: Subgroup Analysis From ULTIMATE Trial Comparison of inhospital mortality, length of hospitalization, costs, and vascular complications of percutaneous coronary interventions guided by ultrasound versus angiography Coronary plaque redistribution after stent implantation is determined by lipid composition: A NIRS-IVUS analysis Serial intravascular ultrasound assessment of very late stent thrombosis after sirolimus-eluting stent placement Randomized comparison of clinical outcomes between intravascular ultrasound and angiography-guided drug-eluting stent implantation for long coronary artery stenoses Relation between baseline plaque features and subsequent coronary artery remodeling determined by optical coherence tomography and intravascular ultrasound American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents Effects of Intravascular Ultrasound-Guided Versus Angiography-Guided New-Generation Drug-Eluting Stent Implantation: Meta-Analysis With Individual Patient-Level Data From 2,345 Randomized Patients

Clinical Trial2011 Dec 1;4(6):562-9.

JOURNAL:Circ Cardiovasc Interv. Article Link

Comprehensive intravascular ultrasound assessment of stent area and its impact on restenosis and adverse cardiac events in 403 patients with unprotected left main disease

Kang SJ, Ahn JM, Song H et al. Keywords: stent; imaging; diagnostic coronary restenosis

ABSTRACT


BACKGROUND - We assessed the optimal intravascular ultrasound (IVUS) stent area to predict angiographic in-stent restenosis (ISR) after sirolimus-eluting stent implantation for unprotected left main coronary artery (LM) disease.


METHODS AND RESULTS - A total of 403 patients treated with single- or 2-stent strategies (crushing and T-stent) had immediate poststenting IVUS and 9-month follow-up angiography. Poststenting minimal stent area (MSA) was measured in each of 4 segments: ostial left anterior descending (LAD), ostial left circumflex (LCX) polygon of confluence (POC, confluence zone of LAD and LCX), and proximal LM above the POC. Overall, 46 (11.4%) showed angiographic restenosis at 9 months: 3 of 67 (4.5%) nonbifurcation lesions treated with a single-stent, 14 of 222 (6.3%) bifurcation lesions treated with single-stent crossover, and 29 of 114 (25.4%) of bifurcation lesions treated with 2 stents. The MSA cutoffs that best predicted ISR on a segmental basis were 5.0 mm(2) (ostial LCX ISR), 6.3 mm(2) (ostial LAD ISR), 7.2 mm(2) (ISR within the POC), and 8.2 mm(2) (ISR within the LM above the POC). Using these criteria, 133 (33.8%) had underexpansion of at least 1 segment. Angiographic ISR (at any location) was more frequent in lesions with underexpansion of at least 1 segment versus lesions with no underexpansion (24.1% versus 5.4%, P<0.001). Two-year major adverse coronary event-free survival rate was significantly lower in patients with underexpansion of at least 1 segment versus lesions with no underexpansion (90±3% versus 98±1%, log-rank P<0.001), and poststenting underexpansion was an independent predictor for major adverse cardiac events (adjusted hazard ratio, 5.56; 95% confidence interval, 1.99-15.49; P=0.001).

CONCLUSIONS - With these criteria, IVUS optimization during LMCA stenting procedures may improve clinical outcomes.