CBS 2019
CBSMD教育中心
English

双重抗血小板治疗持续时间

科研文章

荐读文献

Comparison of 1-month Versus 12-month Dual Antiplatelet Therapy after Implantation of Drug-eluting Stents Guided by either Intravascular Ultrasound or Angiography in Patients with Acute Coronary Syndrome: Rationale and Design of Prospective, Multicenter, Randomized, Controlled IVUS-ACS & ULTIMATE-DAPT trial Long-term dual antiplatelet-induced intestinal injury resulting in translocation of intestinal bacteria into blood circulation increased the incidence of adverse events after PCI in patients with coronary artery disease 'Ticagrelor alone vs. dual antiplatelet therapy from 1 month after drug-eluting coronary stenting among patients with STEMI': a post hoc analysis of the randomized GLOBAL LEADERS trial Dual Antiplatelet Therapy after PCI in Patients at High Bleeding Risk Elaborately Engineering a Self-Indicating Dual-Drug Nanoassembly for Site-Specific Photothermal-Potentiated Thrombus Penetration and Thrombolysis Gut microbiota induces high platelet response in patients with ST segment elevation myocardial infarction after ticagrelor treatment

Original Research2021 Nov 21;e2104264.

JOURNAL:Adv Sci (Weinh). Article Link

Elaborately Engineering a Self-Indicating Dual-Drug Nanoassembly for Site-Specific Photothermal-Potentiated Thrombus Penetration and Thrombolysis

ZQ Zhao, XB Zhang, HY Zhang et al. Keywords: antiplatelet; dual-drug nanoassembly; photothermal thrombolysis; site-specific synergistic thrombolysis; thrombus penetration

ABSTRACT

Thrombotic cardio-cerebrovascular diseases seriously threaten human health. Currently, conventional thrombolytic treatments are challenged by the low utilization, inferior thrombus penetration, and high off-target bleeding risks of most thrombolytic drugs, resulting in unsatisfactory treatment outcomes. Herein, it is proposed that these challenges can be overcome by precisely integrating the conventional thrombolytic strategy with photothermal therapy. After co-assembly engineering optimization, a fibrin-targeting peptide-decorated nanoassembly of DiR (a photothermal probe) and ticagrelor (TGL, an antiplatelet drug) is prepared for thrombus-homing delivery, abbreviated as FT-DT NPs. The elaborately engineered nanoassembly shows multiple advantages, including simple preparation with high drug co-loading capacity, synchronous delivery of two drugs with long systemic circulation, thrombus-targeted accumulation with self-indicating function, as well as photothermal-potentiated thrombus penetration and thrombolysis with high therapeutic efficacy. As expected, FT-DT NPs not only show bright fluorescence signals in the embolized vessels, but also perform photothermal/antiplatelet synergistic thrombolysis in vivo. This study offers a simple and versatile co-delivery nanoplatform for imaging-guided photothermal/antiplatelet dual-modality thrombolysis.