CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines Myocardial Infarction in Young Women An open-Label, 2 × 2 factorial, randomized controlled trial to evaluate the safety of apixaban vs. vitamin K antagonist and aspirin vs. placebo in patients with atrial fibrillation and acute coronary syndrome and/or percutaneous coronary intervention: Rationale and design of the AUGUSTUS trial Cardiac Troponin Elevation in Patients Without a Specific Diagnosis Utility and Challenges of an Early Invasive Strategy in Patients Resuscitated From Out-of-Hospital Cardiac Arrest Another Nail in the Coffin for Intra-Aortic Balloon Counterpulsion in Acute Myocardial Infarction With Cardiogenic Shock Cardiac Shock Care Centers: JACC Review Topic of the Week Current Smoking and Prognosis After Acute ST-Segment Elevation Myocardial Infarction: New Pathophysiological Insights Acute Noncardiac Organ Failure in Acute Myocardial Infarction With Cardiogenic Shock Association of Thrombus Aspiration With Time and Mortality Among Patients With ST-Segment Elevation Myocardial Infarction: A Post Hoc Analysis of the Randomized TOTAL Trial

Original Research2015 Dec;90(12):1614-22.

JOURNAL:Mayo Clin Proc. Article Link

Aggressive Measures to Decrease

Fanari Z, Abraham N, Kolm P et al. Keywords: Door to Balloon Time; Incidence of Unnecessary Cardiac Catheterization; Quality Improvement

ABSTRACT


OBJECTIVE - To assess the impact of an aggressive protocol to decrease the time from hospital arrival to onset of reperfusion therapy ("door to balloon [DTB] time") on the incidence of false-positive (FP) diagnosis of ST-segment elevation myocardial infarction (STEMI) and in-hospital mortality.


PATIENTS AND METHODS - The study population included 1031 consecutive patients with presumed STEMI and confirmed ST-segment elevation who underwent emergent catheterization between July 1, 2008, and December 1, 2012, On July 1, 2009, we instituted an aggressive protocol to reduce DTB time. A quality improvement (QI) initiative was introduced on January 1, 2011, to maintain short DTB while improving outcomes. Outcomes were compared before and after the initiation of the DTB time protocol and similarly before and after the QI initiative. Outcomes were DTB time, the incidence of FP-STEMI, and in-hospital mortality. A review of the emergency catheterization database for the 10-year period from January 1, 2001, through December 31, 2010, was performed for historical comparison.


RESULTS - Of the 1031 consecutive patients with presumed STEMI who were assessed, 170 were considered to have FP-STEMI. The median DTB time decreased significantly from 76 to 61 minutes with the aggressive DTB time protocol (P=.001), accompanied by an increase of FP-STEMI (7.7% vs 16.5%; P=.02). Although a nonsignificant reduction of in-hospital mortality occurred in patients with true-positive STEMI (P=.60), a significant increase in in-hospital mortality was seen in patients with FP-STEMI (P=.03). After the QI initiative, a shorter DTB time (59 minutes) was maintained while decreasing FP-STEMI in-hospital mortality.


CONCLUSION - Aggressive measures to reduce DTB time were associated with an increased incidence of FP-STEMI and FP-STEMI in-hospital mortality. Efforts to reduce DTB time should be monitored systematically to avoid unnecessary procedures that may delay other appropriate therapies in critically ill patients.


Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.