CBS 2019
CBSMD教育中心
English

急性冠脉综合征

科研文章

荐读文献

OPTIMAL USE OF LIPID-LOWERING THERAPY AFTER ACUTE CORONARY SYNDROMES: A Position Paper endorsed by the International Lipid Expert Panel (ILEP) Another Nail in the Coffin for Intra-Aortic Balloon Counterpulsion in Acute Myocardial Infarction With Cardiogenic Shock Optimal Timing of Intervention in NSTE-ACS Without Pre-Treatment The EARLY Randomized Trial Clinical Efficacy and Safety of Alirocumab after Acute Coronary Syndrome According to Achieved Level of Low-Density Lipoprotein Cholesterol: A Propensity Score-Matched Analysis of the ODYSSEY OUTCOMES Trial Healed Culprit Plaques in Patients With Acute Coronary Syndromes Effects of clopidogrel vs. prasugrel vs. ticagrelor on endothelial function, inflammatory parameters, and platelet function in patients with acute coronary syndrome undergoing coronary artery stenting: a randomized, blinded, parallel study Intensive Care Utilization in Stable Patients With ST-Segment Elevation Myocardial Infarction Treated With Rapid Reperfusion Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction Invasive Versus Medical Management in Patients With Prior Coronary Artery Bypass Surgery With a Non-ST Segment Elevation Acute Coronary Syndrome: A Pilot Randomized Controlled Trial No causal effects of plasma homocysteine levels on the risk of coronary heart disease or acute myocardial infarction: A Mendelian randomization study

Clinical Trial2018 Jan 25;378(4):345-353.

JOURNAL:N Engl J Med. Article Link

Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection

Kwong JC, Schwartz KL, Campitelli MA et al. Keywords: respiratory infections; influenza; acute myocardial infarction

ABSTRACT


BACKGROUND - Acute myocardial infarction can be triggered by acute respiratory infections. Previous studies have suggested an association between influenza and acute myocardial infarction, but those studies used nonspecific measures of influenza infection or study designs that were susceptible to bias. We evaluated the association between laboratory-confirmed influenza infection and acute myocardial infarction.


METHODS - We used the self-controlled case-series design to evaluate the association between laboratory-confirmed influenza infection and hospitalization for acute myocardial infarction. We used various high-specificity laboratory methods to confirm influenza infection in respiratory specimens, and we ascertained hospitalization for acute myocardial infarction from administrative data. We defined the "risk interval" as the first 7 days afterrespiratory specimen collection and the "control interval" as 1 year before and 1 year after the risk interval.


RESULTS - We identified 364 hospitalizations for acute myocardial infarction that occurred within 1 year before and 1 year after a positive test result for influenza. Of these, 20 (20.0 admissions per week) occurred during the risk interval and 344 (3.3 admissions per week) occurred during the control interval. The incidence ratio of an admission for acute myocardial infarction during the risk interval as compared with the control interval was 6.05 (95% confidence interval [CI], 3.86 to 9.50). No increased incidence was observed after day 7. Incidence ratios for acute myocardial infarction within 7 days after detection of influenza B, influenza A, respiratory syncytial virus, and other viruses were 10.11 (95% CI, 4.37 to 23.38), 5.17 (95% CI, 3.02 to 8.84), 3.51 (95% CI, 1.11 to 11.12), and 2.77 (95% CI, 1.23 to 6.24), respectively.


CONCLUSIONS - We found a significant association between respiratory infections, especially influenza, and acute myocardial infarction. (Funded by the Canadian Institutes of Health Research and others.)