CBS 2019
CBSMD教育中心
English

血流储备分数

科研文章

荐读文献

Prognostic Implications of Plaque Characteristics and Stenosis Severity in Patients With Coronary Artery Disease Anatomical and Functional Computed Tomography for Diagnosing Hemodynamically Significant Coronary Artery Disease: A Meta-Analysis The Natural History of Nonculprit Lesions in STEMI: An FFR Substudy of the Compare-Acute Trial Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis Coronary CT Angiographic and Flow Reserve-Guided Management of Patients With Stable Ischemic Heart Disease Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics Coronary fractional flow reserve in bifurcation stenoses: what have we learned? The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes

Original ResearchVolume 13, Issue 8, April 2020

JOURNAL:JACC: Cardiovascular Interventions Article Link

The Natural History of Nonculprit Lesions in STEMI: An FFR Substudy of the Compare-Acute Trial

Z Piróth, BM B-de Klerk, E Omerovic et al. Keywords: FFR;nonculprit lesions; STEMI

ABSTRACT


OBJECTIVES - The aim of this study was to determine the prognostic value of fractional flow reserve (FFR) in non-infarct-related arteries (IRAs) in ST-segment elevation myocardial infarction (MI).

 

BACKGROUND - Patients with ST-segment elevation MI often present with multivessel disease. The treatment of non-IRAs is debated. The applicability of FFR has not been widely proved.

 

METHODS - Outcomes were analyzed in all patients in the Compare-Acute (Comparison Between FFR Guided Revascularization Versus Conventional Strategy in Acute STEMI Patients With MVD) trial in whom, after successful primary percutaneous coronary intervention, non-IRAs were interrogated using FFR and treated medically. The treating cardiologist was blinded to the FFR value. The primary endpoint was the composite of cardiovascular mortality, target vesselrelated (non-IRA with FFR measurement at primary percutaneous coronary intervention) nonfatal MI, and target vessel revascularization: major adverse cardiac events (MACE) at 24 months.

 

RESULTS -  A total of 751 patients (963 vessels) were included. Target non-IRAs with MACE had lower FFR compared with those without (0.78 vs. 0.84, respectively; p < 0.001). The median FFR of non-IRAs with TVR was lower than that of those without (0.79 vs. 0.85, respectively; p < 0.001). The difference was significant in all vessels. The median FFR of target non-IRAs with MI was lower than that of those without (0.79 vs. 0.84, respectively; p = 0.016). The MACE rate was significantly (p < 0.001) higher in the lowest of FFR tertiles (<0.80) compared with the others (0.80 to 0.87 and 0.88).

 

CONCLUSIONS - In patients with ST-segment elevation MI with multivessel disease, FFR measured in the medically treated non-IRA immediately after successful primary percutaneous coronary intervention shows a nonlinear and inverse risk continuum of MACE. Importantly, worsening prognosis is demonstrated around the cutoff of 0.80.