CBS 2019
CBSMD教育中心
English

血流储备分数

科研文章

荐读文献

Fractional Flow Reserve-Guided Multivessel Angioplasty in Myocardial Infarction Meta-Analysis of Death and Myocardial Infarction in the DEFINE-FLAIR and iFR-SWEDEHEART Trials Prognostic Implication of Thermodilution Coronary Flow Reserve in Patients Undergoing Fractional Flow Reserve Measurement Impact of Percutaneous Revascularization on Exercise Hemodynamics in Patients With Stable Coronary Disease High-Resolution Cardiac Magnetic Resonance Imaging Techniques for the Identification of Coronary Microvascular Dysfunction Fractional Flow Reserve–Guided PCI for Stable Coronary Artery Disease Diagnostic accuracy of fractional flow reserve from anatomic CT angiography Retrospective Comparison of Long-Term Clinical Outcomes Between Percutaneous Coronary Intervention and Medical Therapy in Stable Coronary Artery Disease With Gray Zone Fractional Flow Reserve - COMFORTABLE Retrospective Study Lesion-Specific and Vessel-Related Determinants of Fractional Flow Reserve Beyond Coronary Artery Stenosis Accuracy of Fractional Flow Reserve Derived From Coronary Angiography

Original Research2018 Feb;27(2):212-218.

JOURNAL:Heart Lung Circ. Article Link

The Utility of Contrast Medium Fractional Flow Reserve in Functional Assessment Of Coronary Disease in Daily Practice

Van Wyk P, Puri A, Blake J et al. Keywords: Contrast Fractional Flow Reserve

ABSTRACT


BACKGROUND Adenosine induced hyperaemic fractional flow reserve (aFFR) is a validated predictor of clinical outcome and part of routine interventional practice. Protocol issues associated with the adenosine infusion limit the use of aFFR in clinical practice. Contrast medium induced hyperaemic FFR (cFFR) is a simpler procedure from a practical standpoint. We compared the two in a real world setting.


METHODS - We analysed 76 patients that had both cFFR and aFFR assessment of 100 angiographically indeterminate coronary stenosis. cFFR was performed with intracoronary contrast medium injections (10ml for left coronary lesions and 8ml for right coronary lesions). The diagnostic performance of cFFR was analysed and compared to the gold standard aFFR.


RESULTS Mean cFFR was 0.87 (±0.07) and mean aFFR was 0.84 (±0.08). Bland-Altman analysis revealed a close agreement between cFFR and aFFR (0.035±0.032; 95% CI: -0.028 to 0.098) and good linear correlation (r=0.92, r2=0.86; p<0.0001). Using cFFR cut-off values of ≤0.83 in predicting an aFFR value of ≤0.80 or a cFFR value ≥0.88, predicting an aFFR value of >0.80 yielded a sensitivity of 100%, specificity of 96.1%, positive predictive value of 92.3%, negative predictive value of 100% and diagnostic accuracy of 96%. Only 24% of cFFR values were in the 0.84 to 0.87 range.


CONCLUSION - Contrast medium induced hyperaemic FFR as an initial assessment may limit the need for adenosine to when cFFR falls in the 0.84 to 0.87 range. The use of adenosine infusion potentially could have been avoided in the majority of patients in this study.


Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.