CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

Clinical epidemiology of heart failure with preserved ejection fraction (HFpEF) in comparatively young hospitalized patients Stage B heart failure: management of asymptomatic left ventricular systolic dysfunction Angiotensin–neprilysin inhibition versus enalapril in heart failure A Fully Magnetically Levitated Left Ventricular Assist Device — Final Report Diagnosis of Nonischemic Stage B Heart Failure in Type 2 Diabetes Mellitus: Optimal Parameters for Prediction of Heart Failure SGLT2 Inhibitors in Patients With Heart Failure With Reduced Ejection Fraction: A Meta-Analysis of the EMPEROR-Reduced and DAPA-HF Trials Fluid Volume Overload and Congestion in Heart Failure: Time to Reconsider Pathophysiology and How Volume Is Assessed Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes The Future of Biomarker-Guided Therapy for Heart Failure After the Guiding Evidence-Based Therapy Using Biomarker Intensified Treatment in Heart Failure (GUIDE-IT) Study 2018 ACC/AHA/HRS Guideline on the Evaluation and Management of Patients With Bradycardia and Cardiac Conduction Delay: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society

Original Research2019 Apr 10. [Epub ahead of print]

JOURNAL:Nature. Article Link

Nitrosative stress drives heart failure with preserved ejection fraction

Schiattarella GG, Altamirano F, Hill JA et al. Keywords: HFpEF; iNOS-driven dysregulation; IRE1α-XBP1 pathway; mechanism of cardiomyocyte dysfunction

ABSTRACT


Heart failure with preserved ejection fraction (HFpEF) is a common syndrome with high morbidity and mortality for which there are no evidence-based therapies. Here we report that concomitant metabolic and hypertensive stress in mice-elicited by a combination of high-fat diet and inhibition of constitutive nitric oxide synthase using Nω-nitro-L-arginine methyl ester (L-NAME)-recapitulates the numerous systemic and cardiovascular features of HFpEF in humans. Expression of one of the unfolded protein response effectors, the spliced form of X-box-binding protein 1 (XBP1s), was reduced in the myocardium of our rodent model and in humans with HFpEF. Mechanistically, the decrease in XBP1s resulted from increased activity of inducible nitric oxide synthase (iNOS) and S-nitrosylation of the endonuclease inositol-requiring protein 1α (IRE1α), culminating in defective XBP1 splicing. Pharmacological or genetic suppression of iNOS, or cardiomyocyte-restricted overexpression of XBP1s, each ameliorated the HFpEF phenotype. We report that iNOS-driven dysregulation of the IRE1α-XBP1 pathway is a crucial mechanism of cardiomyocyte dysfunction in HFpEF.