CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

The Role of the Pericardium in Heart Failure: Implications for Pathophysiology and Treatment The Evolution of β-Blockers in Coronary Artery Disease and Heart Failure (Part 1/5) The Future of Biomarker-Guided Therapy for Heart Failure After the Guiding Evidence-Based Therapy Using Biomarker Intensified Treatment in Heart Failure (GUIDE-IT) Study INTERMACS Profiles and Outcomes Among Non–Inotrope-Dependent Outpatients With Heart Failure and Reduced Ejection Fraction Noninvasive Imaging for the Evaluation of Diastolic Function: Promises Fulfilled Heart Failure With Improved Ejection Fraction-Is it Possible to Escape One’s Past? Randomized Evaluation of Heart Failure With Preserved Ejection Fraction Patients With Acute Heart Failure and Dopamine - The ROPA-DOP Trial Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes Reduced Apolipoprotein M and Adverse Outcomes Across the Spectrum of Human Heart Failure Cardiovascular Events Associated With SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL 2 Study

Original Research2021 Nov;23(11):1858-1871.

JOURNAL:Eur J Heart Fail. Article Link

Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure

NR Pugliese, F Paneni, M Mazzola et al. Keywords: HF; cardiopulmonary-echocardiography exercise stressepicardial adipose tissue;

ABSTRACT

AIMS - We evaluated the impact of echocardiographic epicardial adipose tissue (EAT) on cardiovascular haemodynamics, metabolic profile and prognosis in heart failure (HF) using combined cardiopulmonary-echocardiography exercise stress.

 

METHODS AND RESULTS - We analysed EAT thickness of HF patients with reduced (HFrEF, n = 205) and preserved (HFpEF, n = 188) ejection fraction, including 44 controls. HFpEF patients displayed the highest EAT, while HFrEF patients had lower values than controls. EAT showed an inverse correlation with natriuretic peptides, troponin T and C-reactive protein in HFrEF, while having a direct association with troponin T and C-reactive protein in HFpEF. EAT was independently associated with peak oxygen consumption (VO2) and peripheral extraction (AVO2diff), regardless of body mass index. EAT was inversely correlated with peak VO2 and AVO2diff in HFpEF, while a direct association was observed in HFrEF, where lower EAT values were associated with worse left ventricular systolic dysfunction. In HFpEF, increased EAT was related to right ventriculoarterial (tricuspid annular plane systolic excursion/systolic pulmonary artery pressure) uncoupling. After 21 months of follow-up, 146 HF hospitalizations and 34 cardiovascular deaths were recorded in the HF population. Cox multivariable analysis supported an independent differential role of EAT in HF cohorts (interaction P = 0.01): higher risk of adverse events for increasing EAT in HFpEF [hazard ratio (HR) 1.12, 95% confidence interval (CI) 1.041.37] and for decreasing EAT in HFrEF (HR 0.75, 95% CI 0.540.91).

 

CONCLUSION - In HFpEF, EAT accumulation is associated with worse haemodynamic and metabolic profile, also affecting survival. Conversely, lower EAT values imply higher left ventricular dysfunction, global functional impairment and adverse prognosis in HFrEF.