CBS 2019

Transcatheter Aortic Valve Replacement



Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients Comparative Accuracy of Focused Cardiac Ultrasonography and Clinical Examination for Left Ventricular Dysfunction and Valvular Heart Disease: A Systematic Review and Meta-analysis Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Valve Stenosis: 1-Year Results From the All-Comers NOTION Randomized Clinical Trial Transcatheter Laceration of Aortic Leaflets to Prevent Coronary Obstruction During Transcatheter Aortic Valve Replacement: Concept to First-in-Human Preventing Coronary Obstruction During Transcatheter Aortic Valve Replacement From Computed Tomography to BASILICA A prospective, randomised trial of transapical transcatheter aortic valve implantation vs. surgical aortic valve replacement in operable elderly patients with aortic stenosis: the STACCATO trial Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines Transcatheter aortic-valve replacement with a self-expanding prosthesis

Review ArticleVolume 12, Issue 13, July 2019

JOURNAL:JACC Cardiovasc Imaging. Article Link

Preventing Coronary Obstruction During Transcatheter Aortic Valve Replacement From Computed Tomography to BASILICA

RJ Lederman, VC Babaliaros, T Rogers et al. Keywords: cardiac computed tomography; coronary artery obstruction; transcatheter aortic valve replacement; transcatheter electrosurgery; valve-in-valve; virtual valve; virtual valve-to-coronary distance


Coronary artery obstruction is an uncommon but devastating complication of transcatheter aortic valve replacement (TAVR). Computed tomography appears to be a sensitive but nonspecific predictor of coronary artery obstruction. Transcatheter approaches to prevent and treat coronary artery obstruction, such as “snorkel” stenting, are unsatisfactory because of serious early and late ischemic complications. Bioprosthetic or native aortic scallop intentional laceration to prevent iatrogenic coronary artery obstruction during TAVR (BASILICA) is an early-stage transcatheter procedure to prevent coronary artery obstruction. It works by splitting the native or bioprosthetic leaflets so that they splay after TAVR and preserve coronary artery inflow. Because of the paucity of suitable alternatives, there is interest in the BASILICA technique despite its infancy. This tutorial review summarizes current thinking about how to predict and prevent coronary artery obstruction using BASILICA. First, the authors depict the main pathophysiological mechanisms of TAVR-associated coronary artery obstruction, along with the factors thought to contribute to coronary obstruction. Next, the authors provide a step-by-step guide to analyzing pre-procedural computed tomographic findings to assess obstruction risk and, if desirable, to plan BASILICA. Next, the authors describe the mechanisms underlying transcatheter electrosurgery. Finally, they provide step-by-step guidance on how to perform the procedure, along with a required equipment list.