CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Raising the Evidentiary Bar for Guideline Recommendations for TAVR: JACC Review Topic of the Week Aortic Valve Stenosis Treatment Disparities in the Underserved JACC Council Perspectives Timing of intervention in asymptomatic patients with valvular heart disease Meta-Analysis of Effectiveness and Safety of Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Low-to-Intermediate Surgical Risk Cohort Precision Medicine in TAVR: How to Select the Right Device for the Right Patient Association of Smoking Status With Long‐Term Mortality and Health Status After Transcatheter Aortic Valve Replacement: Insights From the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry Expert Recommendations on Cardiac Computed Tomography for Planning Transcatheter Left Atrial Appendage Occlusion 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines Prognostic implications of baseline 6‐min walk test performance in intermediate risk patients undergoing transcatheter aortic valve replacement Transcatheter Aortic Valve Replacement vs Surgical Replacement in Patients With Pure Aortic Insufficiency

Original ResearchVolume 74, Issue 9, September 2019

JOURNAL:J Am Coll Cardiol. Article Link

Anticoagulation After Surgical or Transcatheter Bioprosthetic Aortic Valve Replacement

T Chakravarty, A Patel, S Kapadia et al. Keywords: anticoagulation; bioprosthetic aortic valve replacement; transcatheter aortic valve replacement

ABSTRACT


BACKGROUND- There is paucity of evidence on the impact of anticoagulation (AC) after bioprosthetic aortic valve replacement (AVR) on valve hemodynamics and clinical outcomes.

 

OBJECTIVES- The study aimed to assess the impact of AC after bioprosthetic AVR on valve hemodynamics and clinical outcomes.

 

METHODS- Data on antiplatelet and antithrombotic therapy were collected. Echocardiograms were performed at 30 days and 1 year post-AVR. Linear regression model and propensity-score adjusted cox proportional model were used to assess the impact of AC on valve hemodynamics and clinical outcomes, respectively.

 

RESULTS- A total of 4,832 patients undergoing bioprosthetic AVR (transcatheter aortic valve replacement [TAVR], n = 3,889 and surgical AVR [SAVR], n = 943) in the pooled cohort of PARTNER2 (Placement of Aortic Transcatheter Valves) randomized trials and nonrandomized registries were studied. Following adjustment for valve size, annular diameter, atrial fibrillation, and ejection fraction at the time of assessment of hemodynamics, there was no significant difference in aortic valve mean gradients or aortic valve areas between patients discharged on AC vs. those not discharged on AC, for either TAVR or SAVR cohorts. A significantly greater proportion of patients not discharged on AC had an increase in mean gradient >10 mm Hg from 30 days to 1 year, compared with those discharged on AC (2.3% vs. 1.1%, p = 0.03). There was no independent association between AC after TAVR and adverse outcomes (death, p = 0.15; rehospitalization, p = 0.16), whereas AC after SAVR was associated with significantly fewer strokes (hazard ratio [HR]: 0.17; 95% confidence interval [CI]: 0.050.60; p = 0.006).

 

CONCLUSIONS- In the short term, early AC after bioprosthetic AVR did not result in adverse clinical events, did not significantly affect aortic valve hemodynamics (aortic valve gradients or area), and was associated with decreased rates of stroke after SAVR (but not after TAVR). Whether early AC after bioprosthetic AVR has impact on long-term outcomes remains to be determined. (Placement of AoRTic TraNscathetER Valves [PARTNERII A]; NCT01314313)