CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Prevalence and Outcomes of Concomitant Aortic Stenosis and Cardiac Amyloidosis Predictors of high residual gradient after transcatheter aortic valve replacement in bicuspid aortic valve stenosis Chimney technique in a TAVR-in-TAVR procedure with high risk of left main artery ostium occlusion Relationship Between Hospital Surgical Aortic Valve Replacement Volume and Transcatheter Aortic Valve Replacement Outcomes Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis Increased Risk of Valvular Heart Disease in Systemic Sclerosis: An Underrecognized Cardiac Complication The Utility of Rapid Atrial Pacing Immediately Post-TAVR to Predict the Need for Pacemaker Implantation Timing of intervention in asymptomatic patients with valvular heart disease Precision Medicine in TAVR: How to Select the Right Device for the Right Patient Aortic Valve Stenosis Treatment Disparities in the Underserved JACC Council Perspectives

Original ResearchVolume 12, Issue 24, December 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Association Between Diastolic Dysfunction and Health Status Outcomes in Patients Undergoing Transcatheter Aortic Valve Replacement

AO Malik, M Omer, MC Pflederer et al. Keywords: health status; left ventricular diastolic dysfunction; TAVR

ABSTRACT

OBJECTIVES - The aim of this study was to assess the association of baseline left ventricular diastolic dysfunction (LVDD) with health status outcomes of patients undergoing transcatheter aortic valve replacement (TAVR).

 

BACKGROUND - Although LVDD in patients with aortic stenosis is associated with higher mortality after TAVR, it is unknown if it is also associated with health status recovery.

 

METHODS - In a cohort of 304 patients with interpretable echocardiograms, undergoing TAVR, LVDD was categorized at baseline as absent (grade 0), mild (grade 1), moderate (grade 2), or severe (grade 3). Disease-specific health status was assessed using the 12-item Kansas City Cardiomyopathy Questionnaire overall summary score (KCCQ-OS) at baseline and at 1-month and 12-month follow-up. Association of baseline LVDD with health status at baseline and follow-up after TAVR was assessed using a linear trend test, and association with health status recovery (change in KCCQ-OS) was examined using a linear mixed model adjusting for baseline KCCQ-OS.

 

RESULTS - Twenty-four (7.9%), 54 (17.8%), 186 (61.2%), and 40 (13.2%) patients had LVDD grades of 0, 1, 2, and 3, respectively. Baseline KCCQ-OS was 61.3 ± 22.7, 51.0 ± 26.1, 44.7 ± 25.7, and 44.4 ± 21.9 (p = 0.004) in patients with LVDD grades of 0, 1,2 and 3. At 1 and 12 months after TAVR, LVDD was not associated with KCCQ-OS. Recovery in KCCQ-OS after TAVR was substantial and similar in patients across all severities of LVDD.

 

CONCLUSIONS - Although LVDD is associated with health status prior to TAVR, patients across all severities of LVDD have similar recovery in health status after TAVR.