CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Predictors and Clinical Outcomes of Next-Day Discharge After Minimalist Transfemoral Transcatheter Aortic Valve Replacement Frailty in Older Adults Undergoing Aortic Valve Replacement: The FRAILTY-AVR Study Leaflet immobility and thrombosis in transcatheter aortic valve replacement 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC) Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM) von Willebrand Factor and Management of Heart Valve Disease: JACC Review Topic of the Week Temporal Trends, Characteristics, and Outcomes of Infective Endocarditis After Transcatheter Aortic Valve Replacement Extracellular Myocardial Volume in Patients With Aortic Stenosis Impact of myocardial fibrosis on left ventricular remodelling, recovery, and outcome after transcatheter aortic valve implantation in different haemodynamic subtypes of severe aortic stenosis Ascending Aortic Length and Risk of Aortic Adverse Events: The Neglected Dimension Contemporary Presentation and Management of Valvular Heart Disease: The EURObservational Research Programme Valvular Heart Disease II Survey

Original ResearchVolume 13, Issue 5, March 2020

JOURNAL:JACC Cardiovasc Interv. Article Link

Balloon Aortic Valvuloplasty as a Bridge to Aortic Valve Replacement: A Contemporary Nationwide Perspective

A Kawsara, F Alqahtani, MF Eleid et al. Keywords: aortic stenosis; BAV; TAVR

ABSTRACT


OBJECTIVES - This study sought to use a national representative database to assess the incidence, predictors, and outcomes of balloon aortic valvuloplasty (BAV) as a bridge to transcatheter aortic valve replacement (TAVR) in contemporary practice.

 

BACKGROUND - Nationwide data on the use and outcomes of BAV as a bridge to TAVR are limited.

 

METHODS - Patients who underwent BAV between January and June in 2015 and 2016 were identified in the National Readmission Database. We assessed rate of subsequent TAVR following BAV, and predictors and timing of subsequent TAVR. We then identified a group of patients who had direct TAVR (without prior BAV) in the original 2015 to 2016 National Readmission Database dataset. We compared in-hospital outcomes following TAVR between patients with prior bridging BAV and those undergoing direct TAVR.

 

RESULTS - Among the 3,691 included patients 1,426 (38.6%) had subsequent TAVR. Timing of TAVR was pre-discharge in 7.4%, within 30 days in 35%, between 31 and 90 days in 47%, between 91 and 180 days in 14%, and >180 days in 4%. Negative predictors of subsequent TAVR included prior defibrillator (odds ratio [OR]: 0.56; 95% confidence interval [CI]: 0.36 to 0.85), dementia (OR: 0.60; 95% CI: 0.46 to 0.79), malnutrition (OR: 0.64; 95% CI: 0.45 to 0.90), and malignancy (OR: 0.62; 95% CI: 0.47 to 0.82). In propensity-score matched cohorts of patients who underwent direct TAVR versus those with prior BAV, in-hospital mortality during TAVR admission was similar (3.7% vs. 3.5%; p = 0.91). Major complications, length of stay, and discharge disposition were also comparable. However, cost of the hospitalization was higher in the direct TAVR group.

 

CONCLUSIONS - About 40% of BAV patients undergo subsequent TAVR mostly within 90 days. In-hospital outcomes of TAVR in these patients were comparable with propensity-score matched patients who underwent TAVR without prior BAV. Further investigations are needed to define the role of BAV in contemporary practice.