CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Considerations for Optimal Device Selection in Transcatheter Aortic Valve Replacement: A Review Reduced Leaflet Motion after Transcatheter Aortic-Valve Replacement Health Status After Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients With Aortic Stenosis Cardiovascular Magnetic Resonance as a complementary method to Transthoracic Echocardiography for Aortic Valve Area Estimation in patients with Aortic Stenosis: A systematic review and meta-analysis Why and How to Measure Aortic Valve Calcification in Patients With Aortic Stenosis The Year in Cardiovascular Medicine 2020: Valvular Heart Disease: Discussing the Year in Cardiovascular Medicine for 2020 in the field of valvular heart disease is Professor Helmut Baumgartner and Dr Javier Bermejo. Mark Nicholls reports Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress-Induced, Piezo-1-Mediated Monocyte Activation 5-Year Outcomes After TAVR With Balloon-Expandable Versus Self-Expanding Valves: Results From the CHOICE Randomized Clinical Trial Delirium After TAVR: Crosspassing the Limit of Resilience Valve‐in‐Valve for Degenerated Transcatheter Aortic Valve Replacement Versus Valve‐in‐Valve for Degenerated Surgical Aortic Bioprostheses: A 3‐Center Comparison of Hemodynamic and 1‐Year Outcome

Review ArticleSeptember 9, 2020

JOURNAL:JAMA Cardiol. Article Link

Considerations for Optimal Device Selection in Transcatheter Aortic Valve Replacement: A Review

BE Claessen, GHL Tang, AS Kini et al. Keywords: TAVR; device selection; RCT

ABSTRACT

IMPORTANCE - Aortic valve stenosis (AS) is the most common manifestation of acquired valvular heart disease in developed countries. Several large-scale randomized clinical trials investigating the entire spectrum of patients with severe symptomatic AS from low to prohibitive risk have established transcatheter aortic valve replacement (TAVR) as a safe and effective alternative to surgical aortic valve replacement.


OBSERVATIONS - There are currently only 3 types of TAVR devices commercially available in the US, but several other valve types are undergoing clinical trials in the US. Because of fundamental differences in engineering features, each TAVR device type has specific strengths and limitations. This review aims to provide an overview of design features and clinical outcomes of various TAVR devices that are either commercially available or undergoing clinical investigation.


CONCLUSIONS AND RELEVANCE - Given the lack of large-scale head-to-head comparisons of various TAVR devices and the rapid development of new device iterations, there is insufficient evidence to claim superiority of one device type over another. Nonetheless, as each TAVR device has unique design characteristics, certain patient-related and anatomy-related factors may slightly favor one or several particular designs.