CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Coronary Access After TAVR Timing of intervention in asymptomatic patients with valvular heart disease Meta-Analysis of Effectiveness and Safety of Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Low-to-Intermediate Surgical Risk Cohort Poor Long-Term Survival in Patients With Moderate Aortic Stenosis Precision Medicine in TAVR: How to Select the Right Device for the Right Patient Association of Smoking Status With Long‐Term Mortality and Health Status After Transcatheter Aortic Valve Replacement: Insights From the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry Expert Recommendations on Cardiac Computed Tomography for Planning Transcatheter Left Atrial Appendage Occlusion 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines Prognostic implications of baseline 6‐min walk test performance in intermediate risk patients undergoing transcatheter aortic valve replacement Transcatheter Aortic Valve Replacement vs Surgical Replacement in Patients With Pure Aortic Insufficiency

Original Research2020 Dec 30;jeaa342.

JOURNAL:Eur Heart J Cardiovasc Imaging. Article Link

Right ventricular function and outcome in patients undergoing transcatheter aortic valve replacement

M Koschutnik, V Dannenberg, C Nitsche et al. Keywords: CMR; RV function; TAVR; aortic stenosis; echocardiography; outcome

ABSTRACT

AIMS - Right ventricular dysfunction (RVD) on echocardiography has been shown to predict outcomes in patients undergoing transcatheter aortic valve replacement (TAVR). However, a comparison with the gold standard, RV ejection fraction (EF) on cardiovascular magnetic resonance (CMR), has never been performed.

 

METHODS AND RESULTS - Consecutive patients scheduled for TAVR underwent echocardiography and CMR. RV fractional area change (FAC), tricuspid annular plane systolic excursion, RV free-lateral-wall tissue Doppler (S'), and strain were assessed on echocardiography, and RVEF on CMR. Patients were prospectively followed. Adjusted regression analyses were used to report the strength of association per 1-SD decline for each RV function parameter with (i) N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels, (ii) prolonged in-hospital stay (>14 days), and (iii) a composite of heart failure hospitalization and death. Two hundred and four patients (80.9 ± 6.6 y/o; 51% female; EuroSCORE-II: 6.3 ± 5.1%) were included. At a cross-sectional level, all RV function parameters were associated with NT-proBNP levels, but only FAC and RVEF were significantly associated with a prolonged in-hospital stay [adjusted odds ratio 1.86, 95% confidence interval (CI) 1.07-3.21; P = 0.027 and 2.29, 95% CI 1.43-3.67; P = 0.001, respectively]. A total of 56 events occurred during follow-up (mean 13.7 ± 9.5 months). After adjustment for the EuroSCORE-II, only RVEF was significantly associated with the composite endpoint (adjusted hazard ratio 1.70, 95% CI 1.32-2.20; P < 0.001).

 

CONCLUSION - RVD as defined by echocardiography is associated with an advanced disease state but fails to predict outcomes after adjustment for pre-existing clinical risk factors in TAVR patients. In contrast, RVEF on CMR is independently associated with heart failure hospitalization and death.