CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Transcatheter Aortic Valve Replacement vs Surgical Replacement in Patients With Pure Aortic Insufficiency Coronary plaque redistribution after stent implantation is determined by lipid composition: A NIRS-IVUS analysis Simple Electrocardiographic Measures Improve Sudden Arrhythmic Death Prediction in Coronary Disease Association of Circulating Monocyte Chemoattractant Protein-1 Levels With Cardiovascular Mortality: A Meta-analysis of Population-Based Studies Combined use of OCT and IVUS in spontaneous coronary artery dissection ACC/AHA Versus ESC Guidelines on Dual Antiplatelet Therapy JACC Guideline Comparison: JACC State-of-the-Art Review Percutaneous Left Atrial Appendage Closure for Stroke Prophylaxis in Patients With Atrial Fibrillation: 2.3-Year Follow-up of the PROTECT AF (Watchman Left Atrial Appendage System for Embolic Protection in Patients With Atrial Fibrillation) Trial From organic and inorganic phosphates to valvular and vascular calcifications Incidence, predictors, and outcomes associated with acute kidney injury in patients undergoing transcatheter aortic valve replacement: from the BRAVO-3 randomized trial Coronary artery imaging with intravascular high-frequency ultrasound

LetterVolume 69, Issue 3, May 2017, Pages 407-410

JOURNAL:Indian Heart J. Article Link

Optical coherence tomography is a kid on the block: I would choose intravascular ultrasound

Dash D. Keywords: Percutaneous coronary intervention; Intravscular ultrasound; Optical coherence tomography; Vulnerable plaque; Biodegradable vascular scaffold

ABSTRACT

Intravascular imaging has improved our understanding of in vivo pathophysiology of coronary artery disease (CAD) and predicted decision-making in percutaneous coronary intervention (PCI). Intravascular ultrasound (IVUS) has emerged as the first clinical imaging method contributing significantly to modern PCI techniques. This modality has outlived many other intravascular techniques 26 years after its inception. It has assisted us in understanding dynamics of atherosclerosis and provides several unique insights into plaque burden, remodeling, and restenosis. It is useful as an imaging endpoint in large progression-regression trial and as workhorse in many catheterization laboratories. IVUS guidance appears to be most beneficial in complex lesion subsets that are being treated with drug-eluting stents. The recent introduction of optical coherence tomography (OCT), a light based imaging technique, has further expanded this field because of its higher resolution and faster image acquisition. The omnipresence of OCT raises the question: Does IVUS have a role in the era of OCT? Whether OCT is superior to IVUS in routine clinical practice? Even if OCT is currently gaining clinical significance in detailed planning of interventional strategies and stent optimization in complex lesion subsets, it is the much younger technique and has to prove its worth. Nevertheless, undoubtedly IVUS plays significant role in studies on coronary atherosclerosis and for guidance of PCI. In fact, both the methods are complementary rather than competitive.