CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

m6A Modification of Profilin-1 in Vascular Smooth Muscle Cells Drives Phenotype Switching and Neointimal Hyperplasia via Activation of the p-ANXA2/STAT3 Pathway Rationale and design of the Women's Ischemia Trial to Reduce Events in Nonobstructive CAD (WARRIOR) trial Intravascular ultrasound-guided versus angiography-guided percutaneous coronary intervention in acute coronary syndromes (IVUS-ACS): a two-stage, multicentre, randomised trial Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person GRK2–YAP signaling is implicated in pulmonary arterial hypertension development Establishment of a canine model of pulmonary arterial hypertension induced by dehydromonocrotaline and ultrasonographic study of right ventricular remodeling Intravascular Ultrasound vs Angiography-Guided Drug-Coated Balloon Angioplasty: The ULTIMATE Ⅲ Trial High-Risk Plaques on Coronary Computed Tomography Angiography: Correlation With Optical Coherence Tomography Drug-Coated Balloon Angioplasty of the Side Branch During Provisional Stenting: The Multicenter Randomized DCB-BIF Trial Low‑Shear Stress Promotes Atherosclerosis via Inducing Endothelial Cell Pyroptosis Mediated by IKKε/STAT1/NLRP3 Pathway

Original ResearchVolume 7, Issue 3, March 2019

JOURNAL:JACC: Heart Failure Article Link

Sex Differences in Heart Failure With Preserved Ejection Fraction Pathophysiology: A Detailed Invasive Hemodynamic and Echocardiographic Analysis

AL Beale, S Nanayakkara, L Segan et al. Keywords: echocardiography; heart failure with preserved ejection fraction; hemodynamics; sex differences; women

ABSTRACT


OBJECTIVES - This study sought to identify sex differences in central and peripheral factors that contribute to the pathophysiology of heart failure with preserved ejection fraction (HFpEF) by using complementary invasive hemodynamic and echocardiographic approaches.

BACKGROUND - Women are overrepresented among patients with HFpEF, and there are established sex differences in myocardial structure and function. Exercise intolerance is a fundamental feature of HFpEF; however, sex differences in the physiological determinants of exercise capacity in HFpEF are yet to be established.

METHODS - Patients with exertional intolerance with confirmed HFpEF were included in this study. Evaluation of the subjects included resting and exercise hemodynamics, echocardiography, and mixed venous blood gas sampling.

RESULTS - A total of 161 subjects included 114 females (71%). Compared to males, females had a higher pulmonary capillary wedge pressure (PCWP) indexed to peak exercise workload (0.8 [0.5 to 1.2] mm Hg/W vs. 0.6 [0.4 to 1] mm Hg/W, respectively; p = 0.001) and lower systemic (1.1 [0.9 to 1.5] ml/mm Hg vs. 1 [0.7 to 1.2] ml/mm Hg, respectively; p = 0.019) and pulmonary (2.9 [2.2 to 4.2] ml/mm Hg vs. 2.4 [1.9 to 3] ml/mm Hg, respectively; p = 0.032) arterial compliance at exercise. Mixed venous blood gas analysis demonstrated a greater rise in lactate indexed to peak workload (0.05 [0.04 to 0.09] mmol/l/W vs. 0.04 [0.03 to 0.06] mmol/l/W, respectively; p = 0.007) in women compared to men. Women had higher mitral inflow velocity to diastolic mitral annular velocity at early filling (E/e) ratios at rest and peak exercise, along with a higher ejection fraction and smaller ventricular dimensions.

CONCLUSIONS - Women with HFpEF demonstrate poorer diastolic reserve with higher echocardiographic and invasive measurements of left ventricular filling pressures at exercise, accompanied by lower systemic and pulmonary arterial compliance and poorer peripheral oxygen kinetics.