CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Italian Society of Interventional Cardiology (GIse) Registry Of Transcatheter Treatment of Mitral Valve RegurgitaTiOn (GIOTTO): Impact of Valve Disease Etiology and Residual Mitral Regurgitation after MitraClip Implantation 3-Year Clinical Follow-Up of the RIBS IV Clinical Trial A Prospective Randomized Study of Drug-Eluting Balloons Versus Everolimus-Eluting Stents in Patients With In-Stent Restenosis in Coronary Arteries Previously Treated With Drug-Eluting Stents Two-year outcomes after treatment of severely calcified coronary lesions with the orbital atherectomy system and the impact of stent types: Insight from the ORBIT II trial Orbital atherectomy for treating de novo, severely calcified coronary lesions: 3-year results of the pivotal ORBIT II trial Long-term clinical outcomes of permanent polymer everolimus-eluting stent implantation following rotational atherectomy for severely calcified de novo coronary lesions: Results of a 22-center study (Tokyo-MD PCI Study) Transcatheter Interventions for Mitral Regurgitation: Multimodality Imaging for Patient Selection and Procedural Guidance Clinical Characteristics and Long-Term Outcomes of Rotational Atherectomy-J2T Multicenter Registry Percutaneous left atrial appendage occlusion: the Munich consensus document on definitions, endpoints, and data collection requirements for clinical studies The Regulation of Pulmonary Vascular Tone by Neuropeptides and the Implications for Pulmonary Hypertension Coronary Calcification and Long-Term Outcomes According to Drug-Eluting Stent Generation

Original Research2008 Aug;4(2):181-3.

JOURNAL:EuroIntervention. Article Link

Management of two major complications in the cardiac catheterisation laboratory: the no-reflow phenomenon and coronary perforations

Muller O, Windecker S, Cuisset T et al. Keywords: complication; no-reflow phenomenon; coronary perforation

ABSTRACT


The no-reflow phenomenon has been defined in 2001 by Eeckhout and Kern as inadequate myocardial perfusion through a given segment of the coronary circulation without angiographic evidence of mechanical vessel obstruction1. Rates of cardiac death and non-fatal cardiac events are increased in patients with compared to those without no-reflow2,3. The term “no reflow” encompasses the slow-flow, slow-reflow, no-flow and low-flow phenomenon. Its incidence depends on the clinical setting, ranging from as low as 2% in elective native coronary percutaneous coronary interventions (PCI) to 20% in saphenous venous graft (SVG) PCI and up to 26% in acute myocardial infarction (AMI) mechanical reperfusion4-6. Depending on the clinical setting, the mechanism of the no-reflow phenomenon differs. Distal embolisation and ischaemic-reperfusion cell injury prevail in patients with AMI, microvascular spasm and embolisation of aggregated platelets occur in native coronary PCI, whereas embolisation of degenerated plaque elements, including thrombotic and atherosclerotic debris are encountered during SVG PCI7. The no-reflow phenomenon is classified according to its pathophysiology with potential implications for its treatment in the categories provided in Table 1.