CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Can the Vanishing Stent Reappear? Fix the Technique, or Fix the Device? Coronary Artery Calcium Is Associated with Left Ventricular Diastolic Function Independent of Myocardial Ischemia Disrupting Fellow Education Through Group Texting: WhatsApp in Fellow Education? Coronary Angiography after Cardiac Arrest — The Right Timing or the Right Patients? Healthy Behavior, Risk Factor Control, and Survival in the COURAGE Trial Alirocumab Reduces Total Nonfatal Cardiovascular and Fatal Events in the ODYSSEY OUTCOMES Trial Aggressive lipid-lowering therapy after percutaneous coronary intervention – for whom and how? Optimal medical therapy improves clinical outcomes in patients undergoing revascularization with percutaneous coronary intervention or coronary artery bypass grafting: insights from the Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery (SYNTAX) trial at the 5-year follow-up Limitations of Repeat Revascularization as an Outcome Measure Incidence and Clinical Outcomes of Stent Fractures on the Basis of 6,555 Patients and 16,482 Drug-Eluting Stents From 4 Centers

Original Research2008 Aug;4(2):181-3.

JOURNAL:EuroIntervention. Article Link

Management of two major complications in the cardiac catheterisation laboratory: the no-reflow phenomenon and coronary perforations

Muller O, Windecker S, Cuisset T et al. Keywords: complication; no-reflow phenomenon; coronary perforation

ABSTRACT


The no-reflow phenomenon has been defined in 2001 by Eeckhout and Kern as inadequate myocardial perfusion through a given segment of the coronary circulation without angiographic evidence of mechanical vessel obstruction1. Rates of cardiac death and non-fatal cardiac events are increased in patients with compared to those without no-reflow2,3. The term “no reflow” encompasses the slow-flow, slow-reflow, no-flow and low-flow phenomenon. Its incidence depends on the clinical setting, ranging from as low as 2% in elective native coronary percutaneous coronary interventions (PCI) to 20% in saphenous venous graft (SVG) PCI and up to 26% in acute myocardial infarction (AMI) mechanical reperfusion4-6. Depending on the clinical setting, the mechanism of the no-reflow phenomenon differs. Distal embolisation and ischaemic-reperfusion cell injury prevail in patients with AMI, microvascular spasm and embolisation of aggregated platelets occur in native coronary PCI, whereas embolisation of degenerated plaque elements, including thrombotic and atherosclerotic debris are encountered during SVG PCI7. The no-reflow phenomenon is classified according to its pathophysiology with potential implications for its treatment in the categories provided in Table 1.