CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Risk Stratification in PAH Advances in therapeutic interventions for patients with pulmonary arterial hypertension Cellular origin and developmental program of coronary angiogenesis OCT guidance during stent implantation in primary PCI: A randomized multicenter study with nine months of optical coherence tomography follow-up A randomized comparison of Coronary Stents according to Short or Prolonged durations of Dual Antiplatelet Therapy in patients with Acute Coronary Syndromes: a pre-specified analysis of the SMART-DATE trial Impact of chronic obstructive pulmonary disease on prognosis after percutaneous coronary intervention and bypass surgery for left main coronary artery disease: an analysis from the EXCEL trial Sirolimus-eluting stent implantation for unprotected left main coronary artery stenosis: comparison with bare metal stent implantation CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis Safety and Efficacy of Transcatheter Aortic Valve Replacement With Continuation of Vitamin K Antagonists or Direct Oral Anticoagulants Sox17 Controls Emergence and Remodeling of Nestin-Expressing Coronary Vessels

Clinical TrialJanuary 29, 2020

JOURNAL:N Engl J Med. Article Link

Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement

RR Makkar, VH Thourani, the PARTNER 2 Investigators. Keywords: intermediate-risk patients; TAVR; SAVR

ABSTRACT


BACKGROUND - There are scant data on long-term clinical outcomes and bioprosthetic-valve function after transcatheter aortic-valve replacement (TAVR) as compared with surgical aortic-valve replacement in patients with severe aortic stenosis and intermediate surgical risk.

 

METHODS - We enrolled 2032 intermediate-risk patients with severe, symptomatic aortic stenosis at 57 centers. Patients were stratified according to intended transfemoral or transthoracic access (76.3% and 23.7%, respectively) and were randomly assigned to undergo either TAVR or surgical replacement. Clinical, echocardiographic, and health-status outcomes were followed for 5 years. The primary end point was death from any cause or disabling stroke.

 

RESULTS - At 5 years, there was no significant difference in the incidence of death from any cause or disabling stroke between the TAVR group and the surgery group (47.9% and 43.4%, respectively; hazard ratio, 1.09; 95% confidence interval [CI], 0.95 to 1.25; P=0.21). Results were similar for the transfemoral-access cohort (44.5% and 42.0%, respectively; hazard ratio, 1.02; 95% CI, 0.87 to 1.20), but the incidence of death or disabling stroke was higher after TAVR than after surgery in the transthoracic-access cohort (59.3% vs. 48.3%; hazard ratio, 1.32; 95% CI, 1.02 to 1.71). At 5 years, more patients in the TAVR group than in the surgery group had at least mild paravalvular aortic regurgitation (33.3% vs. 6.3%). Repeat hospitalizations were more frequent after TAVR than after surgery (33.3% vs. 25.2%), as were aortic-valve reinterventions (3.2% vs. 0.8%). Improvement in health status at 5 years was similar for TAVR and surgery.

 

CONCLUSIONS - Among patients with aortic stenosis who were at intermediate surgical risk, there was no significant difference in the incidence of death or disabling stroke at 5 years after TAVR as compared with surgical aortic-valve replacement. (Funded by Edwards Lifesciences; PARTNER 2 ClinicalTrials.gov number, NCT01314313. )