CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Timing and Causes of Unplanned Readmissions After Percutaneous Coronary Intervention: Insights From the Nationwide Readmission Database Comparison of Heart Team vs Interventional Cardiologist Recommendations for the Treatment of Patients With Multivessel Coronary Artery Disease Impact of Statins on Cardiovascular Outcomes Following Coronary Artery Calcium Scoring Association of CYP2C19 Loss-of-Function Alleles with Major Adverse Cardiovascular Events of Clopidogrel in Stable Coronary Artery Disease Patients Undergoing Percutaneous Coronary Intervention: Meta-analysis Radial Versus Femoral Access for Rotational Atherectomy: A UK Observational Study of 8622 Patients Left Ventricular Assist Devices: Synergistic Model Between Technology and Medicine Utilization and programming of an automatic MRI recognition feature for cardiac rhythm management devices Contrast-Associated Acute Kidney Injury and Serious Adverse Outcomes Following Angiography Level of Scientific Evidence Underlying the Current American College of Cardiology/American Heart Association Clinical Practice Guidelines Treating Multivessel Coronary Artery Disease in ST-Segment Elevation Myocardial Infarction: Why, How, and When?

Original ResearchVolume 13, Issue 6, March 2020

JOURNAL:JACC Cardiovasc Interv. Article Link

Feasibility of Coronary Access and Aortic Valve Reintervention in Low-Risk TAVR Patients

T Rogers, BC Greenspun, G Weissman et al. Keywords: coronary access; coronary artery obstruction; PCI; TAVR; valve-in-valve

ABSTRACT


OBJECTIVES - The aim of this study was to evaluate the feasibility of coronary access and aortic valve reintervention in low-risk patients undergoing transcatheter aortic valve replacement (TAVR) with a balloon-expandable transcatheter heart valve (THV).

 

BACKGROUND - Younger, low-risk TAVR patients are more likely than older, higher risk patients to require coronary angiography, percutaneous coronary intervention, or aortic valve reintervention, but their THVs may impede coronary access and cause coronary obstruction during TAVR-in-TAVR.

 

METHODS - The LRT (Low Risk TAVR) trial (NCT02628899) enrolled 200 subjects with symptomatic severe aortic stenosis to undergo TAVR using commercially available THVs. Subjects who received balloon-expandable THVs and who had 30-day cardiac computed tomographic scans were included in this study. In a subgroup, the feasibility of intentional THV crimping on the delivery catheter to pre-determine commissural alignment was tested.

 

RESULTS - In the LRT trial, 168 subjects received balloon-expandable THVs and had 30-day cardiac computed tomographic scans, of which 137 were of adequate image quality for analysis. The most challenging anatomy for coronary access (THV frame above and commissural suture post in front of a coronary ostium) was observed in 9% to 13% of subjects. Intentional THV crimping did not appear to meaningfully affect commissural alignment. The THV frame extended above the sinotubular junction in 21% of subjects, and in 13%, the distance between the THV and the sinotubular junction was <2 mm, signifying that TAVR-in-TAVR may not be feasible without causing coronary obstruction.

 

CONCLUSIONS - TAVR may present challenges to future coronary access and aortic valve reintervention in a substantial number of low-risk patients.