CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Open sesame technique in percutaneous coronary intervention for ST-elevation myocardial infarction Deficiency of GATA3-Positive Macrophages Improves Cardiac Function Following Myocardial Infarction or Pressure Overload Hypertrophy Stent Thrombosis Risk Over Time on the Basis of Clinical Presentation and Platelet Reactivity: Analysis From ADAPT-DES Complete or Culprit-Only Revascularization for Patients With Multivessel Coronary Artery Disease Undergoing Percutaneous Coronary Intervention: A Pairwise and Network Meta-Analysis of Randomized Trials Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction Association between Coronary Collaterals and Myocardial Viability in Patients with a Chronic Total Occlusion 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Prognostic and Practical Validation of Current Definitions of Myocardial Infarction Associated With Percutaneous Coronary Intervention High-Sensitivity Troponin and The Application of Risk Stratification Thresholds in Patients with Suspected Acute Coronary Syndrome Multivessel PCI Guided by FFR or Angiography for Myocardial Infarction

Original ResearchVolume 13, Issue 8, April 2020

JOURNAL:JACC: Cardiovascular Interventions Article Link

Incidence and Outcomes of Acute Coronary Syndrome After Transcatheter Aortic Valve Replacement

AMentias, MY Desai, M Saad et al. Keywords: ACS; post TAVR; PCI

ABSTRACT


OBJECTIVES - This study sought to address a knowledge gap by examining the incidence, timing, and predictors of acute coronary syndrome (ACS) after transcatheter aortic valve replacement (TAVR) in Medicare beneficiaries.

 

BACKGROUND - Evidence about incidence and outcomes of ACS after TAVR is scarce.

 

METHODS - We identified medicare patients who underwent tavr from 2012 to 2017 and were admitted with ACS during follow-up. We compared outcomes based on the type of ACS: ST-segment elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), and unstable angina. In patients with nonST-segment elevation ACS, we compared outcomes based on the treatment strategy (invasive vs. conservative) using inverse probability weighting analysis.

 

RESULTS - Out of 142,845 patients with TAVR, 6,741 patients (4.7%) were admitted with ACS after a median time of 297 days (interquartile range: 85 to 662 days), with 48% of admissions occurring within 6 months. The most common presentation was NSTEMI. Predictors of ACS were history of coronary artery disease, prior revascularization, diabetes, valve-in-TAVR, and acute kidney injury. STEMI was associated with higher 30-day and 1-year mortality compared with NSTEMI (31.4% vs. 15.5% and 51.2% vs. 41.3%, respectively; p < 0.01). Overall, 30.3% of patients with nonST-segment elevation ACS were treated with invasive approach. On inverse probability weighting analysis, invasive approach was associated with lower adjusted long-term mortality (adjusted hazard ratio: 0.69; 95% confidence interval: 0.66 to 0.73; p < 0.01) and higher risk of repeat revascularization (adjusted hazard ratio: 1.29; 95% confidence interval: 1.16 to 1.43; p < 0.001).

 

CONCLUSIONS - After TAVR, ACS is infrequent (<5%), and the most common presentation is NSTEMI. Occurrence of STEMI after TAVR is associated with a high mortality with nearly one-third of patients dying within 30 days. Optimization of care is needed for post-TAVR ACS patients and if feasible, invasive approach should be considered in these high-risk patients.