CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Assessment of Vascular Dysfunction in Patients Without Obstructive Coronary Artery Disease: Why, How, and When A Platelet Function Modulator of Thrombin Activation Is Causally Linked to Cardiovascular Disease and Affects PAR4 Receptor Signaling 2019 Guidelines on Diabetes, Pre-Diabetes and Cardiovascular Diseases developed in collaboration with the EASD ESC Clinical Practice Guidelines Adenosine and adenosine receptor-mediated action in coronary microcirculation Does Risk of Premature Discontinuation of Dual-Antiplatelet Therapy Following PCI Attenuate With Increasing Age? A prospective, randomized, open-label trial of 6-month versus 12-month dual antiplatelet therapy after drug-eluting stent implantation in ST-elevation myocardial infarction: Rationale and design of the Rationale and design of a prospective substudy of clinical endpoint adjudication processes within an investigator-reported randomised controlled trial in patients with coronary artery disease: the GLOBAL LEADERS Adjudication Sub-StudY (GLASSY) Stress Echocardiography and PH: What Do the Findings Mean? Membrane type 1 matrix metalloproteinase promotes LDL receptor shedding and accelerates the development of atherosclerosis Impact of bleeding during dual antiplatelet therapy in patients with coronary artery disease

Original Research2017 Apr 18;69(15):1924-1933.

JOURNAL:J Am Coll Cardiol. Article Link

Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure

Jakovljevic DG, Yacoub MH, Schueler S et al. Keywords: LVAD; cardiac power; exercise capacity; heart transplant; recovery

ABSTRACT


BACKGROUND - Left ventricular assist devices (LVADs) have been used as an effective therapeutic option in patients with advanced heart failure, either as a bridge to transplantation, as destination therapy, or in some patients, as a bridge to recovery.


OBJECTIVES This study evaluated whether patients undergoing an LVAD bridge-to-recovery protocol can achieve cardiac and physical functional capacities equivalent to those of healthy controls.


METHODS - Fifty-eight male patients-18 implanted with a continuous-flow LVAD, 16 patients with LVAD explanted (recovered patients), and 24 heart transplant candidates (HTx)-and 97 healthy controls performed a maximal graded cardiopulmonary exercise test with continuous measurements of respiratory gas exchange and noninvasive (rebreathing) hemodynamic data. Cardiac function was represented by peak exercise cardiac power output (mean arterial blood pressure × cardiac output) and functional capacity by peak exercise O2 consumption.


RESULTS - All patients demonstrated a significant exertional effort as demonstrated with the mean peak exercise respiratory exchange ratio >1.10. Peak exercise cardiac power output was significantly higher in healthy controls and explanted LVAD patients compared with other patients (healthy 5.35 ± 0.95 W; explanted 3.45 ± 0.72 W; LVAD implanted 2.37 ± 0.68 W; and HTx 1.31 ± 0.31 W; p < 0.05), as was peak O2 consumption (healthy 36.4 ± 10.3 ml/kg/min; explanted 29.8 ± 5.9 ml/kg/min; implanted 20.5 ± 4.3 ml/kg/min; and HTx 12.0 ± 2.2 ml/kg/min; p < 0.05). In the LVAD explanted group, 38% of the patients achieved peak cardiac power output and 69% achieved peak O2 consumption within the ranges of healthy controls.


CONCLUSIONS - The authors have shown that a substantial number of patients who recovered sufficiently to allow explantation of their LVAD can even achieve cardiac and physical functional capacities nearly equivalent to those of healthy controls.


Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.