CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Coronary Flow Reserve in the Instantaneous Wave-Free Ratio/Fractional Flow Reserve Era: Too Valuable to Be Neglected Adaptive development of concomitant secondary mitral and tricuspid regurgitation after transcatheter aortic valve replacement Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial Therapeutic efficacy of paclitaxel-coated balloon for de novo coronary lesions with diameters larger than 2.8 mm Coronary Artery Intraplaque Microvessels by Optical Coherence Tomography Correlate With Vulnerable Plaque and Predict Clinical Outcomes in Patients With Ischemic Angina Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation Joint consensus on the use of OCT in coronary bifurcation lesions by the European and Japanese bifurcation clubs Comparison of intravascular ultrasound-guided with angiography-guided double kissing crush stenting for patients with complex coronary bifurcation lesions: rationale and design of a prospective, randomized and multicenter DKCRUSH VIII trial The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease A new optical coherence tomography-based calcium scoring system to predict stent underexpansion

Original Research2017 Apr 18;69(15):1924-1933.

JOURNAL:J Am Coll Cardiol. Article Link

Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure

Jakovljevic DG, Yacoub MH, Schueler S et al. Keywords: LVAD; cardiac power; exercise capacity; heart transplant; recovery

ABSTRACT


BACKGROUND - Left ventricular assist devices (LVADs) have been used as an effective therapeutic option in patients with advanced heart failure, either as a bridge to transplantation, as destination therapy, or in some patients, as a bridge to recovery.


OBJECTIVES This study evaluated whether patients undergoing an LVAD bridge-to-recovery protocol can achieve cardiac and physical functional capacities equivalent to those of healthy controls.


METHODS - Fifty-eight male patients-18 implanted with a continuous-flow LVAD, 16 patients with LVAD explanted (recovered patients), and 24 heart transplant candidates (HTx)-and 97 healthy controls performed a maximal graded cardiopulmonary exercise test with continuous measurements of respiratory gas exchange and noninvasive (rebreathing) hemodynamic data. Cardiac function was represented by peak exercise cardiac power output (mean arterial blood pressure × cardiac output) and functional capacity by peak exercise O2 consumption.


RESULTS - All patients demonstrated a significant exertional effort as demonstrated with the mean peak exercise respiratory exchange ratio >1.10. Peak exercise cardiac power output was significantly higher in healthy controls and explanted LVAD patients compared with other patients (healthy 5.35 ± 0.95 W; explanted 3.45 ± 0.72 W; LVAD implanted 2.37 ± 0.68 W; and HTx 1.31 ± 0.31 W; p < 0.05), as was peak O2 consumption (healthy 36.4 ± 10.3 ml/kg/min; explanted 29.8 ± 5.9 ml/kg/min; implanted 20.5 ± 4.3 ml/kg/min; and HTx 12.0 ± 2.2 ml/kg/min; p < 0.05). In the LVAD explanted group, 38% of the patients achieved peak cardiac power output and 69% achieved peak O2 consumption within the ranges of healthy controls.


CONCLUSIONS - The authors have shown that a substantial number of patients who recovered sufficiently to allow explantation of their LVAD can even achieve cardiac and physical functional capacities nearly equivalent to those of healthy controls.


Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.