CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Venous and Arterial Thromboembolism in Patients With Cancer: JACC: CardioOncology State-of-the-Art Review Ablation Versus Drug Therapy for Atrial Fibrillation in Heart Failure Results From the CABANA Trial Evolving insights into the role of local shear stress in late stent failure from neoatherosclerosis formation and plaque destabilization Long-Term Outcomes of Patients With Mediastinal Radiation–Associated Coronary Artery Disease Undergoing Coronary Revascularization With Percutaneous Coronary Intervention and Coronary Artery Bypass Grafting The Art of SAPIEN 3 Transcatheter Mitral Valve Replacement in Valve-in-Ring and Valve-in-Mitral-Annular-Calcification Procedures Does pulsed field ablation regress over time? A quantitative temporal analysis of pulmonary vein isolation 2020 ACC Expert Consensus Decision Pathway on Management of Bleeding in Patients on Oral Anticoagulants: A Report of the American College of Cardiology Solution Set Oversight Committee Thirty-Day Outcomes Following Transfemoral Transseptal Transcatheter Mitral Valve Replacement: Intrepid TMVR Early Feasibility Study Results Functional Mitral Regurgitation Outcome and Grading in Heart Failure With Reduced Ejection Fraction 2015 ACC/HRS/SCAI Left Atrial Appendage Occlusion Device Societal Overview

Original Research2017 Apr 18;69(15):1924-1933.

JOURNAL:J Am Coll Cardiol. Article Link

Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure

Jakovljevic DG, Yacoub MH, Schueler S et al. Keywords: LVAD; cardiac power; exercise capacity; heart transplant; recovery

ABSTRACT


BACKGROUND - Left ventricular assist devices (LVADs) have been used as an effective therapeutic option in patients with advanced heart failure, either as a bridge to transplantation, as destination therapy, or in some patients, as a bridge to recovery.


OBJECTIVES This study evaluated whether patients undergoing an LVAD bridge-to-recovery protocol can achieve cardiac and physical functional capacities equivalent to those of healthy controls.


METHODS - Fifty-eight male patients-18 implanted with a continuous-flow LVAD, 16 patients with LVAD explanted (recovered patients), and 24 heart transplant candidates (HTx)-and 97 healthy controls performed a maximal graded cardiopulmonary exercise test with continuous measurements of respiratory gas exchange and noninvasive (rebreathing) hemodynamic data. Cardiac function was represented by peak exercise cardiac power output (mean arterial blood pressure × cardiac output) and functional capacity by peak exercise O2 consumption.


RESULTS - All patients demonstrated a significant exertional effort as demonstrated with the mean peak exercise respiratory exchange ratio >1.10. Peak exercise cardiac power output was significantly higher in healthy controls and explanted LVAD patients compared with other patients (healthy 5.35 ± 0.95 W; explanted 3.45 ± 0.72 W; LVAD implanted 2.37 ± 0.68 W; and HTx 1.31 ± 0.31 W; p < 0.05), as was peak O2 consumption (healthy 36.4 ± 10.3 ml/kg/min; explanted 29.8 ± 5.9 ml/kg/min; implanted 20.5 ± 4.3 ml/kg/min; and HTx 12.0 ± 2.2 ml/kg/min; p < 0.05). In the LVAD explanted group, 38% of the patients achieved peak cardiac power output and 69% achieved peak O2 consumption within the ranges of healthy controls.


CONCLUSIONS - The authors have shown that a substantial number of patients who recovered sufficiently to allow explantation of their LVAD can even achieve cardiac and physical functional capacities nearly equivalent to those of healthy controls.


Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.