CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Diagnosis and Prognosis of Coronary Artery Disease with SPECT and PET Randomized comparison of stent strut coverage following angiography- or optical coherence tomography-guided percutaneous coronary intervention In-Hospital Coronary Revascularization Rates and Post-Discharge Mortality Risk in Non–ST-Segment Elevation Acute Coronary Syndrome Optimum Blood Pressure in Patients With Shock After Acute Myocardial Infarction and Cardiac Arrest Ticagrelor versus Clopidogrel in Patients with STEMI Treated with Fibrinolytic Therapy: TREAT Trial Association Between Collateral Circulation and Myocardial Viability Evaluated by Cardiac Magnetic Resonance Imaging in Patients With Coronary Artery Chronic Total Occlusion Myocardial infarction with non-obstructive coronary arteries as compared with myocardial infarction and obstructive coronary disease: outcomes in a Medicare population Geometry as a Confounder When Assessing Ventricular Systolic Function: Comparison Between Ejection Fraction and Strain Short Sleep Duration, Obstructive Sleep Apnea, Shiftwork, and the Risk of Adverse Cardiovascular Events in Patients After an Acute Coronary Syndrome A Novel Circulating MicroRNA for the Detection of Acute Myocarditis

Original Research2017 Apr 18;69(15):1924-1933.

JOURNAL:J Am Coll Cardiol. Article Link

Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure

Jakovljevic DG, Yacoub MH, Schueler S et al. Keywords: LVAD; cardiac power; exercise capacity; heart transplant; recovery

ABSTRACT


BACKGROUND - Left ventricular assist devices (LVADs) have been used as an effective therapeutic option in patients with advanced heart failure, either as a bridge to transplantation, as destination therapy, or in some patients, as a bridge to recovery.


OBJECTIVES This study evaluated whether patients undergoing an LVAD bridge-to-recovery protocol can achieve cardiac and physical functional capacities equivalent to those of healthy controls.


METHODS - Fifty-eight male patients-18 implanted with a continuous-flow LVAD, 16 patients with LVAD explanted (recovered patients), and 24 heart transplant candidates (HTx)-and 97 healthy controls performed a maximal graded cardiopulmonary exercise test with continuous measurements of respiratory gas exchange and noninvasive (rebreathing) hemodynamic data. Cardiac function was represented by peak exercise cardiac power output (mean arterial blood pressure × cardiac output) and functional capacity by peak exercise O2 consumption.


RESULTS - All patients demonstrated a significant exertional effort as demonstrated with the mean peak exercise respiratory exchange ratio >1.10. Peak exercise cardiac power output was significantly higher in healthy controls and explanted LVAD patients compared with other patients (healthy 5.35 ± 0.95 W; explanted 3.45 ± 0.72 W; LVAD implanted 2.37 ± 0.68 W; and HTx 1.31 ± 0.31 W; p < 0.05), as was peak O2 consumption (healthy 36.4 ± 10.3 ml/kg/min; explanted 29.8 ± 5.9 ml/kg/min; implanted 20.5 ± 4.3 ml/kg/min; and HTx 12.0 ± 2.2 ml/kg/min; p < 0.05). In the LVAD explanted group, 38% of the patients achieved peak cardiac power output and 69% achieved peak O2 consumption within the ranges of healthy controls.


CONCLUSIONS - The authors have shown that a substantial number of patients who recovered sufficiently to allow explantation of their LVAD can even achieve cardiac and physical functional capacities nearly equivalent to those of healthy controls.


Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.