CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Hemodynamic Response to Nitroprusside in Patients With Low-Gradient Severe Aortic Stenosis and Preserved Ejection Fraction Imaging Coronary Anatomy and Reducing Myocardial Infarction Effect of a Restrictive vs Liberal Blood Transfusion Strategy on Major Cardiovascular Events Among Patients With Acute Myocardial Infarction and Anemia: The REALITY Randomized Clinical Trial Long-Term Outcomes of Patients With Late Presentation of ST-Segment Elevation Myocardial Infarction 中国肺高血压诊断和治疗指南2018 High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of CHK1 via Activating mTORC1/P70S6K Pathway Effect of Medication Co-payment Vouchers on P2Y12 Inhibitor Use and Major Adverse Cardiovascular Events Among Patients With Myocardial Infarction: The ARTEMIS Randomized Clinical Trial Coronary Angiography in Patients With Out-of-Hospital Cardiac Arrest Without ST-Segment Elevation: A Systematic Review and Meta-Analysis Association of Acute Procedural Results with Long-term Outcomes After CTO-PCI

Original Research2017 Apr 18;69(15):1924-1933.

JOURNAL:J Am Coll Cardiol. Article Link

Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure

Jakovljevic DG, Yacoub MH, Schueler S et al. Keywords: LVAD; cardiac power; exercise capacity; heart transplant; recovery

ABSTRACT


BACKGROUND - Left ventricular assist devices (LVADs) have been used as an effective therapeutic option in patients with advanced heart failure, either as a bridge to transplantation, as destination therapy, or in some patients, as a bridge to recovery.


OBJECTIVES This study evaluated whether patients undergoing an LVAD bridge-to-recovery protocol can achieve cardiac and physical functional capacities equivalent to those of healthy controls.


METHODS - Fifty-eight male patients-18 implanted with a continuous-flow LVAD, 16 patients with LVAD explanted (recovered patients), and 24 heart transplant candidates (HTx)-and 97 healthy controls performed a maximal graded cardiopulmonary exercise test with continuous measurements of respiratory gas exchange and noninvasive (rebreathing) hemodynamic data. Cardiac function was represented by peak exercise cardiac power output (mean arterial blood pressure × cardiac output) and functional capacity by peak exercise O2 consumption.


RESULTS - All patients demonstrated a significant exertional effort as demonstrated with the mean peak exercise respiratory exchange ratio >1.10. Peak exercise cardiac power output was significantly higher in healthy controls and explanted LVAD patients compared with other patients (healthy 5.35 ± 0.95 W; explanted 3.45 ± 0.72 W; LVAD implanted 2.37 ± 0.68 W; and HTx 1.31 ± 0.31 W; p < 0.05), as was peak O2 consumption (healthy 36.4 ± 10.3 ml/kg/min; explanted 29.8 ± 5.9 ml/kg/min; implanted 20.5 ± 4.3 ml/kg/min; and HTx 12.0 ± 2.2 ml/kg/min; p < 0.05). In the LVAD explanted group, 38% of the patients achieved peak cardiac power output and 69% achieved peak O2 consumption within the ranges of healthy controls.


CONCLUSIONS - The authors have shown that a substantial number of patients who recovered sufficiently to allow explantation of their LVAD can even achieve cardiac and physical functional capacities nearly equivalent to those of healthy controls.


Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.